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Bifurcations

Big question in this section: suppose we have a model that involves some parameter

How does the qualitative behavior of the model depend on that parameter?

Does the model behave similarly for some ranges of the parameter?

At what value(s) of the parameter does behavior change?

How does behavior change? 
(e.g. does stability of an equilibrium change? Does the number of equilibria change?)

Bifurcation: a change in the qualitative behavior of a model at some value of a 
parameter



Transcritical (Exchange of Stability) Bifurcation

Bifurcation diagram shows that the 
qualitative behavior of the system 
changes when R0 passes through 1
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A qualitative change in behavior is called 
a bifurcation

In this case, two equilibria collide and 
exchange stability: a transcritical bifurcation

Bifurcation: “split in two”

Qualitatively, the model behaves the same for all R0 values less than one (infection 
free equilibrium is stable), and for all R0 values greater than one (infection free 
equilibrium is unstable, endemic equilibrium exists and is stable)

R0 = 1 is a threshold condition: below this value, infection can neither invade nor 
persist in the system; above this value, infection can invade and persist



Saddle-Node Bifurcation

We saw this a couple of lectures ago, when we talked about the logistic growth model 
subject to harvesting at a constant rate:

dN
dt

= rN 1− N
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h = 0 : logistic growth, unstable equilibrium at 0 and a stable equilibrium at K

As we look at larger values of h, the two equilibria move closer to each other

Eventually, there is a value of h at which the two equilibria collide

Beyond this, there are no equilibria

We saw all of this graphically, but we can also do the analysis using the algebraic approach

g(N ) = rN 1− N
K
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Saddle-Node Bifurcation

Algebraically, the simplest model that has a saddle-node bifurcation is

See homework!

dy
dt
= a− y2



Saddle-Node Bifurcation in Harvesting Model
Step 1: Find the equilibria. Solve g(N) = 0 

0 = rN 1− N
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Two solutions if            

one solution if

no solutions if

Quadratic equation for N

0 = N 2 −KN + hK
r

N =
−B± B2 − 4AC

2A
A =1, B = −K, C = hK r

N =
K ± K 2 − 4hK r
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Could use quadratic formula on this. But I prefer to 

rearrange to make the coefficient of N2 equal to one: 

multiply through by (-K/r)

K 2 − 4hK r > 0
K 2 − 4hK r = 0
K 2 − 4hK r < 0

0 = −K
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Saddle-Node Bifurcation in Harvesting Model
K 2 − 4hK r = K K − 4h r( )

K 2 − 4hK r > 0K is positive, so                                means K − 4h r > 0

In other words, if h < r K/4  we have two equilibria

If h = r K/4  we have one equilibrium

If h > r K/4  we have no equilibria

This makes sense if we recall that the fastest growth rate of the logistic growth model is r K/4

This is the fastest rate at which the population can replenish itself, hence the fastest rate at which 
we can sustainably remove individuals

If we remove individuals at greater than this rate, the population will continually decrease in size 

(Remember, this model has the unrealistic feature that N will go negative in this case.)



Saddle-Node Bifurcation in Harvesting Model
Step 2: Find the stability of the equilibria

g(N ) = rN 1− N
K
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We see that g’(N) = 0 if N = K/2 ,   that  g’(N) < 0 if  N > K/2  and  that g’(N) > 0 if  N < K/2 

N =
K
2
±

K 2 − 4hK r
2

Our equilibria are 

These are symmetrically positioned about K/2 , so the larger has g’(N) < 0 (stable) and the 
smaller has g’(N) > 0 (unstable)  

When h = rK/4 , the single equilibrium has g’(N) = 0 ; but a graphical analysis shows this to be 
semi-stable  



Saddle-Node Bifurcation in Harvesting Model
Bifurcation diagram for the logistic model with constant 
harvesting
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Saddle node bifurcation when h = rK/4, as the two equilibria collide and destroy 
each other



Ecological Comments on Harvesting Model
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Imagine that we start off with no 
harvesting, and population sitting at 
its carrying capacity

Then slowly increase harvesting. 
What will happen?

Population will track the upper curve (stable equilibrium): population size will decrease as 
harvesting increases

Everything will be OK until h reaches rK/4. Above this point there is no stable equilibrium, so 
population will suddenly crash

This behavior is clear from the bifurcation diagram, but imagine if all we could see was the 
population responding to increasing harvesting

Troubling aspect from an ecological viewpoint: there was no indication that population 
would crash in this way: as h was increased, N slowly decreased until we very suddenly “fell 
off the edge of the cliff” without warning “Tipping point”



A More Realistic Harvesting Model
dN
dt

= rN 1− N
K
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assumes that harvesting rate is constant, regardless of 
population size

A more realistic model would have the harvesting term depend on the population size N

(By the way, the right hand side of this differential equation is fairly 
similar to that of the SIS model from last time…)

Equilibria? Solve

Clearly we cannot harvest at rate h if the population size is zero!

dN
dt

= rN 1− N
K
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Simplest description: assume that harvesting rate is proportional to N :    hN

Either N = 0 or N = K(1-h/r) Notice, 2nd equilibrium = 0 when h = r



A More Realistic Harvesting Model
dN
dt

= rN 1− N
K
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Stability? g(N ) = rN 1− N
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!g (0) = r − hN = 0 : g’(0) > 0 if h < r
g’(0) < 0 if h > r

unstable
stable

N* = K(1-h/r) : !g K 1− h / r( )( ) = r − 2rK K 1− h
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g’(N*) < 0 if h < r
g’(N*) > 0 if h > r

stable
unstable

Equilibria collide when h = r  and exchange stability: transcritical bifurcation



A More Realistic Harvesting Model
dN
dt

= rN 1− N
K
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Bifurcation diagram: 

Equilibria collide when h = r  and exchange stability: transcritical bifurcation
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An Even More Realistic Harvesting Model
dN
dt

= rN 1− N
K
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In reality, there might be some limit to the amount of harvesting 
that can take place (e.g. a fishing fleet with a fixed number of ships)

Saturating harvesting function: H (N ) = hN
A+ N

What does this look like? 

When N is small, A + N ≈ A, 
and so H(N) ≈ hN/A (approx. linear)

When N is large, A + N ≈ N, 
and so H(N) ≈ hN/N ≈ h

When N = A, H(N) = hA/(2A) = h/2
“half maximum point”
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An Even More Realistic Harvesting Model
dN
dt

= rN 1− N
K

"

#
$

%

&
'−

hN
A+ N

Equilibria? 0 = rN 1− N
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0 is always an equilibrium, and it’s easy to show that (    ) = 0 
gives rise to a quadratic equation, with 2, 1 or 0 solutions



An Even More Realistic Harvesting Model dN
dt

= rN 1− N
K
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Equilibria? 0 is always an equilibrium, plus an additional 2, 1 or 0 solution(s)

Can do the stability analysis (we skip the details) and get the following bifurcation diagram:

Equilibrium at 0 is unstable for small h, but stable for h > rA
Two other equilibria: one undergroes a transcritical bifurcation, at  h = rA , with the equilibrium at 0
The two other equilibria undergo a saddle-node bifurcation at the value of h shown
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An Even More Realistic Harvesting Model dN
dt

= rN 1− N
K
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This model exhibits the tipping point phenomenon: 
sudden disappearance of the positive stable equil. as 
harvesting is increased beyond some point

For a range of h values, shown by the red bar, the 
model has two stable biologically feasible equilibria: 
bistability

What does the phase diagram look like in the bistable region?

Stable equilibrium at 0, positive stable equilibrium and an unstable equilibrium in between

Which equilibrium is approached in the long run depends on the initial condition: 
start below the unstable equilibrium and arrows take you to zero
start above the unstable equilibrium, arrows take you to the positive stable equilibrium 

Two basins of attraction:  initial conditions in (-∞ , N1) go to 0, those in (N1  , -∞) go to N2
The point N1 separates these two (“separatrix”: think “continental divide”)

0 N1 N2



Ecological Comments; Hysteresis
This model exhibits the tipping point 
phenomenon: sudden disappearance of the 
positive stable equilibrium as harvesting is 
increased beyond some point

Imagine starting off at h = 0, with population sitting at its carrying capacity

For a range of h values, the model has two 
stable biologically feasible equilibria: 
bistability

As h is increased, population will slowly decrease until it falls off the edge of the cliff & goes extinct

What happens if you then decrease h and there is a small trickle of individuals into the population? 

If you are above h = rA, population will stay at zero: it can only jump back up to positive stable 
equilibrium if you reintroduce enough individuals to overcome the lower unstable equilibrium

Bistability can lead to some very interesting behavior:
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Once you are below h = rA, reseeding the population with some small number will cause it to 
jump back up to the positive stable equilibrium
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Ecological Comments; Hysteresis

Important ecological message in this model:
Cannot undo the catastrophic effect of over-harvesting by simply reducing harvesting to what 
would have been a sustainable level

Hysteresis: when a change isn’t reversed when you undo the change you made to the parameter
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