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SIS Model for a directly transmitted infection
Susceptible/infectious/susceptible model for an infectious disease

Population of N individuals: each is either 
susceptible ( S ) or infected and infectious ( I )

Rate at which new infections arise is proportional to both the number of susceptibles
and the number of infectives, constant of proportionality b/N

Infectives recover at per-capita rate g, but have no immunity after recovery

S I
infection

recovery N = S + I hence: S = N - I

dS
dt

= −
βSI
N

+γ I

dI
dt
=
βSI
N

−γ I

Because N = S + I , we only need one of these two equations…
use S = N - I to rewrite the I equation as:

dI
dt
=
β(N − I )I

N
−γ I



SIS Model for a directly transmitted infection

Rewrite in terms of y = I / N , the fraction of the population that is infectious

S I
infection

recovery

dI
dt
=
β(N − I )I

N
−γ I

dI
dt
= β 1− I

N
"

#
$

%

&
'I −γ ISimplify:

I = N y dI
dt
=
d
dt

Ny( ) = N dy
dt

N dy
dt
= β 1− y( )Ny−γNy

dy
dt
= β 1− y( ) y−γy

Terminology: we call rate constants (e.g. b and g) parameters of the model



Equilibria of the SIS Model
Set dy/dt = 0 and solve for y

dy
dt
= β 1− y( ) y−γy

0 = β 1− y( ) y−γy
0 = y β 1− y( )−γ( )

Either   y = 0      (infection free equilibrium)

or 0 = β 1− y( )−γ

γ = β 1− y( )
γ β =1− y

y =1−γ β

y =1−1 R0

R0 = β γDefine                   , the basic reproductive number

This equilibrium is biologically feasible if R0 > 1
(otherwise, this value of y is negative)

Notice: R0 > 1 if b > g ; R0 < 1 if b < g

the endemic equilibrium



Stability of the Equilibria of the SIS Model
We have y = 0  and y = 1 – 1/R0 ,  and  

dy
dt
= β 1− y( ) y−γy

= βy−βy2 −γy

y = 0      (infection free equilibrium)

y* =1−1 R0

g(y) = β 1− y( ) y−γy
!g (y) = β − 2βy−γ

!g (0) = β − 2β ⋅0−γ = β −γ

Recall: R0 > 1 if b > g ; R0 < 1 if b < g
Stable if b < g ;  Unstable if b > g

Infection free equilibrium is stable if R0 < 1 ;  Unstable if R0 > 1

!g (1−1 R0 ) = β − 2β 1−1 R0( )−γ
= β − 2β 1−γ β( )−γ
= −β +γ

g’(0) < 0 if  b < g ; g’(0) > 0 if b > g

= − β −γ( )
Unstable if b < g ;  Stable if b > g

g’(y*) > 0 if  b < g ; g’(y*) < 0 if b > g

Endemic equilibrium is unstable (and infeasible) if  R0 < 1 ;  Stable (and feasible) if  R0 > 1



Bifurcation Diagram: Summarizing Equilibria of SIS Model

Location and stability of the equilibria of the SIS model depend on the parameter R0

Summarize this on a bifurcation diagram that shows equilbria, and their stability, as 
functions of the parameter

solid lines denote 
stable equilibria

dashed lines denote 
unstable equilibria
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Alternative: Graphical Analysis of SIS Model
dy
dt
= β 1− y( ) y−γy

Downwards parabola, with zeros at y = 0 and y =1−1 R0

g(y) = β 1− y( ) y−γy
Sketch function on right side of differential equation

         1 - 1/R0 0 y0

g(
y)

0          1 - 1/R00 y0

g(
y)

R0 < 1 picture: R0 > 1 picture: 

1 - 1/R0 1 - 1/R00 0

Phase diagrams: 
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Relationship between Bifurcation Diagram and Phase Diagrams

Can build up the bifurcation diagram by rotating and “stacking up” phase lines for 
different values of the parameter (here, R0 )

1 - 1/R0

0

1 - 1/R0

R0 < 1  

R0 > 1  

1 - 1/R0 0

1 - 1/R00

Phase diagrams: 

R0 > 1  

R0 < 1  



Transcritical (Exchange of Stability) Bifurcation

Bifurcation diagram shows that the 
qualitative behavior of the system 
changes when R0 passes through 1
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A qualitative change in behavior is called 
a bifurcation

In this case, two equilibria collide and 
exchange stability: a transcritical bifurcation

Bifurcation: “split in two”

Qualitatively, the model behaves the same for all R0 values less than one (infection 
free equilibrium is stable), and for all R0 values greater than one (infection free 
equilibrium is unstable, endemic equilibrium exists and is stable)

R0 = 1 is a threshold condition: below this value, infection can neither invade nor 
persist in the system; above this value, infection can invade and persist



Biological Interpretation and Implications
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Thinking about the parameters b and g, the definition R0 = b/g makes sense: 
higher transmission parameter: more infections. Higher recovery rate: fewer infections

R0 = 1 is a threshold condition: below this value, infection can neither invade nor 
persist in the system; above this value, infection can invade and persist

R0 is known as the basic reproductive number
and equals the average number of secondary 
infections caused by a single infective 
individual in an otherwise entirely susceptible 
population

The threshold condition makes sense: 
If R0 > 1, infectives give rise to more than one infection, and so disease can spread
If they give rise to less than one infection, disease cannot spread

R0 measures the ability of the infection to spread



An Interlude: Non-Dimensionalization

What about the other “unimportant” parameter?

The SIS model has three parameters, N, b and g :

This corresponds to measuring the number of infectives relative to the population size, 
in other words, changing the units in which we measure the number of infectives

dI
dt
=
β(N − I )I

N
−γ I

but its qualitative behavior depends on a single parameter combination, R0 = b /g

Why is this? 

Population size doesn’t affect the qualitative behavior of the model: we were able to 
rewrite in terms of fractions of the population

Why (in some sense) are two parameters unimportant? 

dy
dt
= β 1− y( ) y−γy



Non-Dimensionalization

What about the other “unimportant” parameter?

dy
dt
= β 1− y( ) y−γy

The timescale on which the infection spreads does not change the qualitative behavior

This corresponds to changing the units in which we measure time 

A natural choice measures time relative to the average duration of infectiousness (1/g)

(This essentially corresponds to setting the average duration of infection equal to 1)

dy
dt
= γ

β
γ
1− y( ) y− y
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= γ R0 1− y( ) y− y{ }

dy
dτ

= R0 1− y( ) y− y t is time measured in these new units, t = t g

Non-dimensionalization: measuring state variables & time in different units (rescaling)
Because we have two quantities that we can rescale ( I and t ), we can reduce the 
number of parameters by two



Non-Dimensionalization
Non-dimensionalization: measuring state variables & time in different units (rescaling)
Because we had two quantities that we could rescale ( I and t ), we could reduce the 
number of parameters by two

For this course, I want you to be aware that you can non-dimensionalize; I won’t ask 
you to non-dimensionalize a given model

Final comment: logistic growth model has two parameters, r and K

Can non-dimensionalize, measuring N in units of the carrying capacity and time in units 
of 1/r
Can show that this leaves us with a non-dimensionalized logistic growth model that has 
no parameters (!) dy

dt
= y 1− y( )

All logistic growth models (assuming r and K are both positive) share the same 
qualitative behavior (we have already seen this)



Transcritical (Exchange of Stability) Bifurcation

Algebraically, the simplest model that has a transcritical bifurcation is

See homework!

dy
dt
= y a− y( )

(Logistic growth, with carrying capacity a, where a can be positive, negative or zero
- although zero and negative values of a aren’t biologically meaningful… )



Saddle-Node Bifurcation

We saw this a couple of lectures ago, when we talked about the logistic growth model 
subject to harvesting at a constant rate:

dN
dt

= rN 1− N
K
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h = 0 : logistic growth, unstable equilibrium at 0 and a stable equilibrium at K

As we look at larger values of h, the two equilibria move closer to each other

Eventually, there is a value of h at which the two equilibria collide

Beyond this, there are no equilibria

We saw all of this graphically, but we can also do the analysis using the algebraic approach

g(N ) = rN 1− N
K
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'− h The algebra is straightforward, but slightly messy



Saddle-Node Bifurcation in Harvesting Model
Step 1: Find the equilibria. Solve g(N) = 0 

0 = rN 1− N
K
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rN 2

K
− h = −

rN 2

K
+ rN − h

0 = −r
K

N 2 −KN + hK
r
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0 = − rN
2

K
+ rN − h

Two solutions if            
one solution if
no solutions if

Quadratic equation for N

0 = N 2 −KN + hK
r

N =
−B± B2 − 4AC

2A
A =1, B = −K, C = hK r

N =
K ± K 2 − 4hK r

2

N =
K
2
±

K 2 − 4hK r
2

Could use quadratic formula on this. But I prefer to 
rearrange to make the coefficient of N2 equal to one

K 2 − 4hK r > 0
K 2 − 4hK r = 0
K 2 − 4hK r < 0



Saddle-Node Bifurcation in Harvesting Model
K 2 − 4hK r = K K − 4h r( )

K 2 − 4hK r > 0K is positive, so                                means K − 4h r > 0

In other words, if h < r K/4  we have two equilibria

If h = r K/4  we have one equilibrium

If h > r K/4  we have no equilibria

This makes sense if we recall that the fastest growth rate of the logistic growth model is r K/4

This is the fastest rate at which the population can replenish itself, hence the fastest rate at which 
we can sustainably remove individuals

If we remove individuals at greater than this rate, the population will continually decrease in size 

(Remember, this model has the unrealistic feature that N will go negative in this case.)



Saddle-Node Bifurcation in Harvesting Model
Step 2: Find the stability of the equilibria

g(N ) = rN 1− N
K
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K
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!g (N ) = − 2rN
K

+ r = r 1− 2N
K
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We see that g’(N) = 0 if N = K/2 ,   that  g’(N) < 0 if  N > K/2  and  that g’(N) > 0 if  N < K/2 

N =
K
2
±

K 2 − 4hK r
2

Our equilibria are 

These are symmetrically positioned about K/2 , so the larger has g’(N) < 0 (stable) and the 
smaller has g’(N) > 0 (unstable)  

When h = rK/4 , the single equilibrium has g’(N) = 0 ; but a graphical analysis shows this to be 
semi-stable  



Saddle-Node Bifurcation in Harvesting Model
Step 2: Find the stability of the equilibria

g(N ) = rN 1− N
K
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We see that g’(N) = 0 if N = K/2 ,   that  g’(N) < 0 if  N > K/2  and  that g’(N) > 0 if  N < K/2 

N =
K
2
±

K 2 − 4hK r
2

Our equilibria are 

These are symmetrically positioned about K/2 , so the larger has g’(N) < 0 (stable) and the 
smaller has g’(N) > 0 (unstable)  

When h = rK/4 , the single equilibrium has g’(N) = 0 ; but a graphical analysis shows this to be 
semi-stable  



Saddle-Node Bifurcation in Harvesting Model
Step 2: Find the stability of the equilibria

g(N ) = rN 1− N
K
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We see that g’(N) = 0 if N = K/2 ,   that  g’(N) < 0 if  N > K/2  and  that g’(N) > 0 if  N < K/2 

N =
K
2
±

K 2 − 4hK r
2

Our equilibria are 

These are symmetrically positioned about K/2 , so the larger has g’(N) < 0 (stable) and the 
smaller has g’(N) > 0 (unstable)  

When h = rK/4 , the single equilibrium has g’(N) = 0 ; but a graphical analysis shows this to be 
semi-stable  



Saddle-Node Bifurcation in Harvesting Model
Bifurcation diagram for the logistic model with constant 
harvesting
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Saddle node bifurcation when h = rK/4, as the two equilibria collide and destroy 
each other



Saddle-Node Bifurcation

Algebraically, the simplest model that has a saddle-node bifurcation is

See homework!

dy
dt
= a− y2


