
SIR	Model	for	Spread	of	Infec0on	
Compartmental	model:	Suscep0bles,	Infec0ves,	Recovereds	
	
	
	
	
	
Ignore	births	and	deaths	(e.g.	short-lived	outbreak)	
“Standard	incidence”	term		βSI/N						β : “transmission	parameter”	

	 	 	 	 	 	 	 		“well-mixed”	popula0on	
Assume	constant	per-capita	recovery	rate	of	γ										

	 	 	 	 	 	 	 	1/γ	is	average	dura0on	of	infec0ousness	
	
Note:	S	+	I	+	R	=	N	(constant),	so	need	only	worry	about	S	and	I	
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of transmission within families, or other transmission experiments. Such data,
however, are often unavailable during the early stages of a disease outbreak.

An alternative approach involves fitting a mathematical model to outbreak data,
obtaining estimates for the parameters of the model, allowing R0 to be calculated.
The simplest model that can be used for this purpose is the standard deterministic
compartmental SIR model [see, for example, 11]. Individuals are assumed to either
be susceptible, infectious or removed, with the numbers of each being written as
S, I , and R, respectively. Susceptible individuals acquire infection through con-
tacts with infectious individuals, and the simplest form of the model assumes that
new infections arise at rate βSI/N . Here N is the population size and β is the
transmission parameter, which is given by the product of the contact rate and the
transmission probability. Recovery of infectives is assumed to occur at a constant
rate γ , corresponding to an average duration of infection of 1/γ , and leads to per-
manent immunity. Throughout this chapter we shall denote the average duration of
infectiousness by DI and assume permanent immunity following infection. We shall
also ignore demographic processes (births and deaths), which is a good approxi-
mation if the disease outbreak is short-lived and the infection is non-fatal. Ignoring
demography leads to the population size N being constant. The model can be written
as the following set of differential equations

dS/dt = −βSI/N (1)

dI/dt = βSI/N − γ I (2)

dR/dt = γ I. (3)

During the early stages of an outbreak with a novel pathogen, almost the entire
population will be susceptible, and, since S ≈ N , the transmission rate equals
β I . The transmission parameter β is the rate at which each infective gives rise
to secondary infections and so the basic reproductive number can be written as
R0 = βDI = β/γ . During this initial period, the changing prevalence of infec-
tion can, to a very good approximation, be described by the single linear equation
d I/dt = γ (R0 − 1)I. (We remark that the S = N assumption corresponds to
linearizing the model about its infection free equilibrium.) In other words, provided
that R0 is greater than one, which we shall assume to be the case throughout this
chapter, prevalence initially increases exponentially with growth rate

r = γ (R0 − 1). (4)

The incidence of infection is given by βSI/N and so, during the early stages of
an outbreak, prevalence and incidence are proportional in the SIR setting, so this
equation also describes the rate at which incidence grows.

Equation (4) provides a relationship, R0 = 1 + r DI, between R0 and quan-
tities that can typically be measured (the initial growth rate of the epidemic and
the average duration of infection), and as a result has provided one of the most
straightforward ways to estimate R0.
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Figure 6: Direction field for the SI model. The arrows show the direction in which y moves: y will
increase if it lies between 0 and 1.

6 Describing Recovery from Infection and Disease Outbreaks: The

SIR Model in a Closed Population

Typically, people do not remain infectious: they recover or die. We can model this by including a
‘removed’ class in the model, leading to an SIR model.

IS R
infection recovery

Figure 7: Flowchart showing movement between classes in the SIR model.

We have to describe the I to R transition in some way. The simplest assumption takes the recovery
(removal) term to be proportional to the number of infective individuals:

Ṡ = ��SI/N (15)

İ = �SI/N � �I (16)

Ṙ = �I. (17)

Again, we consider a closed population, so S + I + R = N . We usually consider the initial number
of susceptibles to be close to N .

This model is often called the Kermack and McKendrick model as it appeared in their 1927 paper.
It is also called the general epidemic model. (Although this SIR model is often called THE
Kermack and McKendrick model, it has been pointed out that the 1927 paper goes beyond this
model, discussing a more general framework that employs fewer assumptions.)

It’s worth pausing to think about the assumption made regarding the recovery term. Having a
constant recovery rate means that the distribution of infectious periods is exponential with mean
1/�. Biologically, this assumption corresponds to the chance of recovery being independent of
the time since infection. In most cases this is far from realistic, but it considerably simplifies the
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Behavior	of	SIR	Model	
Behavior	is	governed	by	the	value	of	the	ra0o	R0	=	β/γ	
	
Outbreak	can	occur	if	R0	>1,	cannot	occur	if	R0	<	1	
	
R0	>	1	plot:	
	
β =	1,	γ =	0.2,	N	=	1000	
S(0)	=	999,	I(0)	=	1	
	
S(t)	:	dashed	line	
I(t)	:	solid	line	

	 	 	 		
	
	
	



Behavior	of	SIR	Model	
Behavior	is	governed	by	the	value	of	the	ra0o	R0	=	β/γ	
	
Outbreak	can	occur	if	R0	>1,	cannot	occur	if	R0	<	1	
	
R0	<	1	plot:	
	
β =	0.15,	γ =	0.2,	N	=	1000	
S(0)	=	999,	I(0)	=	1	
	
S(t)	:	not	shown	(remains	

	 	close	to	999)	
I(t)	:	solid	line	

	note	different	scale	on		
	ver/cal	axis	
	 	 	 		

	
	
	



Simple	Analysis	of	SIR	Model	in	Terms	of	R0	
Consider	dI/dt		:		
	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	(*)	
	

	 	 	 	per-capita	transmission	maximized	when	S	≈	N		:	
	
	
	

I		increases	if	R0	>1,	decreases	if	R0	<	1	
	
R0	:	basic	reproduc0ve	number				=		β	x	1/γ			=	β	x	(av.	dura0on	of	infec0on)	
			

	average	number	of	secondary	infec0ons	caused	by	an	infec0ous	individual		
	 	when	the	popula0on	is	almost	en0rely	suscep0ble	
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Epidemiological	Importance	of	R0	
Can	control	infec0on	if	we	can	reduce	R0		(	=	β/γ ) below	one		

	 	(e.g.	reduce	β	or	increase	γ)	
	
Alterna0vely,	from	(*)	on	previous	slide,	if	we	can	reduce	S/N	below	1/R0	
	

	e.g.	vaccinate	pc	=	1	–	1/R0		or	more	of	the	popula0on	
	
	
Control	is	more	difficult	for	a	highly	infec0ous	agent	(e.g.	measles,	with	R0	≈	15-18	)	
than	for	a	less	infec0ous	agent	(e.g.	smallpox	with	R0	≈	5-7	)	
	
Cri/cal	for	epidemiologists	to	es/mate	R0	(i.e.	β	and	γ),	preferably	also	ge=ng	
some	idea	of	reliability	of	es/mate(s)	

	Typical	method	used:	fit	model	to	some	dataset	
	



SIR	Model	:	Forward	Simula0on	
Nonlinearity	of	the	transmission	term	means	we	cannot	find	an	analy0c	solu0on	
of	the	model	for	S	and	I	in	terms	of	0me	
	
Numerically	integrate	(simulate)	model	in	MATLAB,	given	a	set	of	parameters	and	
ini0al	values	for	S	and	I	
	
We	shall	use	the		ode45		rou0ne	in	MATLAB	
	
MATLAB	works	with	vectors,	so	we	shall	use	the	first	element	(e.g.	y(1)	)	to	
denote	S	and	the	second	(e.g.	y(2)	)	to	denote	I			
	

	



ode45!
[t,y]=ode45(@odefun,tspan,y0,options,pars);	

odefun			the	name	of	the	func0on	that	gives	the	right	sides	of	our	differen0al	equa0ons				
	 	 	 	 	(replace	“odefun”	with	something	more	descrip0ve,	but	keep	“@”)	

tspan 	vector	that	specifies	the	interval	of	0mes	over	which	to	integrate:		
	 	 	 	 	 	 	 	tspan = [t_initial, t_final]		
	 	or	a	vector	of	0mes	at	which	we	wish	to	obtain	output	:		
	 	 	 	tspan = [t_initial, t1, t2, … , t_final]!

y0		 	 	column	vector	of	ini0al	states	(i.e.	ini0al	condi0ons)	:							y0 = [ S0 ; I0 ]!

options 	op0ons	for	the	ODE	solver,	e.g.	solu0on	tolerances	
	 	 	use	[]	for	no	op0ons;	see	odeset	for	informa0on	on	op0ons	

pars 	a	vector	of	parameter	values	that	gets	passed	to	odefun!

t 	 	(returned)	column	vector	of	0mes	at	which	output	is	given	

y 	 	(returned)	matrix	of	numerically	calculated	values	of	state	variables	over	0me	
	
	 	 	each	row	refers	to	a	different	0me	point,		each	column	to	a	different	state	variable					

	 	e.g.	y(1,:)	are	ini0al	states,					y(end,:)	final	states,	
	 			y(:,2)	is	a	column	vector	of	I	values	at	all	0mes	—	this	is	what	we	want	to	make	an	
	 	 	 	 	 	 	 	 	 	 	 	 	I(t)	vs	t	plot	



odefun!
function f = odefun(t,y,pars)!

Func0on	odefun	returns	the	entries	of	the	right	sides	of	the	differen0al	equa0ons,	f	(t,y),	as	a	column	
vector	

t	 	 		 	(scalar)	value	of	0me	at	which	to	evaluate	f	

y 	 	 	column	vector	containing	values	of	state	variables	

pars 	 	a	vector	of	parameter	values	that	gets	passed	to	odefun  
	

!function f = sir_rhs(t,y,pars)  
 

! !f=zeros(2,1); ! ! ! ! ! !  need	to	return	a	column	vector 
! ! ! ! 
! !beta=pars(1);  
! !gamma=pars(2);  
! !N=pars(3);! ! ! ! ! ! !  could	eliminate	a	number	of	these 

 ! ! ! ! ! ! ! ! ! ! !  lines	if	we	worked	with	y(1),	pars(1) 
! !S=y(1);! ! ! ! ! 	 	 						etc	in	the	f(1)	and	f(2)	lines 
! !I=y(2);  

 
! !f(1)=-beta*S*I/N;  
! !f(2)=beta*S*I/N-gamma*I;  
!end!



SIR	Model	Simula0on	
function sir_simulation  
 

!beta=1.0;  
!gamma=1.0/5.0;    % five day infectious period  
!N=1000.0;!

!pars=[beta,gamma,N];!

!tspan=[0,50];! ! % simulate for 50 days!

!y0=[999;1];       % one initial infective!

![t,y]=ode45(@sir_rhs,tspan,y0,[],pars);  
 

!plot(t,y(:,2));   % plot prevalence of infection over time  
 

end!

function f = sir_rhs(t,y,pars)  
!f=zeros(2,1);  
!f(1)=-pars(1)*y(1)*y(2)/pars(3);  
!f(2)=pars(1)*y(1)*y(2)/pars(3)-pars(2)*y(2);  

end!


