
Brief	Discussion	of	Numerical	Integra4on	of	
ODEs	

The	Forward	Euler	Method	

Differen4al	equa4on	

Remember	defini4on	of	the	deriva4ve:	

dy
dt
= f (t, y)

dy
dt
= lim
h→0

y(t + h)− y(t)
h

#

$
%

&

'
(

Approximate	deriva4ve	using	a	small,	but	
finite,	value	of	h	:	

dy
dt
≈
y(t + h)− y(t)

h

The	differen4al	equa4on	gives	us	the	
value	of	dy/dt,	so	subs4tute:	

f (t, y) ≈ y(t + h)− y(t)
h

Rearrange:	 y(t + h) ≈ y(t)+ h ⋅ f (t, y)

Star4ng	from	an	ini4al	t	and	y,	take	small	4me	steps	of	length	h,	upda4ng	t	
and	y	as	we	go	along	

The	Forward	Euler	Method	

Ini4al	condi4on	y	=	y0	at	t	=	t0	

y j+1 = y j + h f t j, y j()

Example:	find	an	approximate	solu4on	of																					,	with	y(0)	=	1,	using	h	=	0.25	

Time	step	h	

Calculate	y	values	y1,	y2,	y3,	y4,	…		at	4mes	t1=	t0	+	h,	t2=	t0	+2	h,	t3=	t0	+3	h,	…		
using	

dy
dt
= −2y

(why	use	this	example?)	

 j tj yj f (tj , yj)

 0 0 1
 1 0.25 1 + 0.25(-2) = 0.5

 -2
 -1

 2 0.5 0.5 + 0.25(-1) = 0.25 -0.5
 3 0.75 0.25 + 0.25(-0.5) = 0.125 -0.25
 4 1 0.125 + 0.25(-0.25) = 0.0625 -0.125
 5 1.25 0.0625 + 0.25(-0.125) = 0.03125

An	“explicit”	method:	have	an	explicit	
formula	for	yj+1	

Forward	Euler	Example:	smaller	step	size	

We	get	a	be\er	approxima4on	using	a	smaller	step	size		

0 0.2 0.4 0.6 0.8 1
t

0

0.2

0.4

0.6

0.8

1
y

approximate (h = 0.1)
approximate (h = 0.25)
exact

However,	there	is	a	systema4c	underes4mate	of	the	true	solu4on	in	both	
approximate	curves.		Why?	

Problems	with	Forward	Euler	
Forward	Euler	method	is	badly	behaved	if	the	step	size	becomes	too	large	

0 0.2 0.4 0.6 0.8 1
t

0

0.2

0.4

0.6

0.8

1

y

approximate (h = 0.1)
approximate (h = 0.25)
exact

Numerical	instabili4es	…	Forward	Euler	is	a	good	method	to	explain	idea	
behind	numerical	integra4on,	but	not	a	great	method	to	use	in	prac4ce		

0 0.2 0.4 0.6 0.8 1
t

0

0.2

0.4

0.6

0.8

1

y

h = 0.1
h = 0.25
h = 0.4
h = 0.5
exact

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

h = 0.1
h = 0.25
h = 0.4
h = 0.5
h = 0.6
exact

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

h = 0.1
h = 0.25
h = 0.4
h = 0.5
h = 0.8
exact

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t

-3

-2

-1

0

1

2

3

y
h = 0.1
h = 0.25
h = 0.4
h = 0.5
h = 0.6
h = 0.8
h = 1.1
exact

Improvements	on	Forward	Euler	

1.	Tolerance	checks	
Smaller	step	size	improved	accuracy,	but	increases	computa4on	4me.		
What	is	the	appropriate	step	size?		
Could	compare	predic4on	with	that	obtained	using	a	smaller	step	size	or	a	
different	method:	if	they	are	“close	enough”	then	our	step	size	is	small	enough,	
otherwise	reduce	it	

3.	Higher	order	techniques	
Forward	Euler	uses	a	linear	approxima4on	to	obtain	the	next	value	of	y.	Could	
use	a	quadra4c	(or	higher	order)	approxima4on	

4.	Base	the	method	on	a	different	formula	for	the	derivaFve	
Forward	Euler	uses	a	“forward	difference”	approxima4on	to	dy/dt.	Could	use	
one	of	several	alterna4ves	(e.g.	“backward	difference”)	

2.	Variable	(adapFve)	step	size	
Step	size	needs	to	be	small	if	f	(t	,	y)	changes	rapidly	
Forward	Euler	doesn’t	require	h	to	be	fixed,	so	we	could	take	smaller	or	larger	
steps,	depending	on	how	rapidly	f	(t	,	y)	is	changing	at	a	par4cular	value	of	y	

The	Backward	Euler	Method	

Alterna4ve	formula	for	deriva4ve:	
dy
dt t

= lim
h→0

y(t)− y(t − h)
h

#

$
%

&

'
(

Approximate	deriva4ve	using	a	small,	but	
finite,	value	of	h	:	

dy
dt
≈
y(t − h)− y(t)

h

The	differen4al	equa4on	gives	us	the	
value	of	dy/dt,	so	subs4tute:	

f t, y(t)() ≈ y(t − h)− y(t)
h

Rearrange:	 y(t) ≈ y(t − h)+ h ⋅ f t, y(t)()

No4ce:	value	of	y	inside	the	func4on	f		is	its	value	at	the	end	of	the	4me	step	–	
this	is	the	“new”	value	of	y	
	
We	no	longer	get	an	explicit	formula	for	y.	This	is	an	implicit	method:	at	each	
4me	step	we	get	an	equa4on	that	has	to	be	solved	for	the	“new”	value	of	y	
	

Implicit	methods	are	more	difficult	to	implement,	but	are	be\er	behaved	numerically	

y(t + h) ≈ y(t)+ h ⋅ f t + h, y(t + h)()

Numerical	Analysis	

Numerical	integra4on	of	differen4al	equa4ons	is	a	big	subject:	whole	books,	
en4re	courses,	en4re	academic	careers,	…		

What	is	important	for	us	is	having	some	idea	of	what	is	involved	and	some	idea	
of	the	potenFal	piOalls		
(e.g.	numerical	instability	–	view	numerical	results	with	some	cau4on)	

We	won’t	worry	too	much	about	details	here.	We	will	typically	use	pre-
packaged	numerical	integra4on	rou4nes	(e.g.	web	applets	or	rou4nes	in	
MATLAB)	that	others	have	wri\en	for	us	

ODE	Solvers	in	MATLAB	

Nice	ar4cle	at		
h\ps://blogs.mathworks.com/loren/2015/09/23/ode-solver-selec4on-in-matlab/	
	
discusses	MATLAB’s	ODE	solvers:	

	ode45	,	ode23	,	ode113	,	ode15s	,	ode23s	,	ode23t	,	ode23tb	
and	some	reasons	why	you	might	choose	one	over	the	other	
	
Talks	about	naming	system:	ode45	uses	both	a	fourth	order	and	a	figh	order	
Runge-Ku\a	method,	providing	an	es4mate	of	error.		
	
Variable	step-length	employed,	guided	by	error	es4mate.	
	
Discusses	sFff	systems	and	that	certain	rou4nes	(ode15s,	ode23s,	ode23t,	
ode23tb)	are	be\er	suited	for	these	
	
Very	short	version	of	guidance	says	ode45,	but	ode15s	for	s4ff		[see	ar4cle	for	
addi4onal	comments/recommenda4ons]	
	
	

