
Ordinary Differential Equation (ODE) models: the focus of this course 
 
One independent variable, usually time: 
 

•  

€ 

dx
dt

= f (x,t) the rate of change of x is a function of x and time 

   one state variable: one dimensional system 
 

•  

€ 

dx
dt

= f (x, y,t)

dy
dt

= g(x, y,t)
 coupled ODEs, two state variables: two dimensional system 

 
 
  
 
 
 
 
 
 

 
A first order ODE only involves first derivatives. (Remember the alternative notation for time derivatives: 

€ 

dx dt = ˙ x  ) 
 
Second and higher order ODEs involve higher order derivatives.  
 

Second order ODEs commonly arise in physics because acceleration is a second derivative. Classic examples: 
 

•  

€ 

d2x
dt2

= −ω2x  describes the motion of a mass on a (perfect) spring: the simple harmonic oscillator.  

 

•  

€ 

d2x
dt2

= −
g
L
sin x  describes the simple pendulum (x is the angle to the vertical) 

(Since 

€ 

sin x ≈ x  when x is small, the simple harmonic oscillator provides a good approximation to the pendulum 
model when the oscillations have small amplitude.) 

 
We focus on Systems of First Order Ordinary Differential Equations (coupled 1st order ODEs) 
 

•   These provide a natural description of many biological systems 
 

•   We can always reduce an ODE of any order to a set of first order ODEs.  
 

Example: 

€ 

d2x
dt2

= −ω2x  

We use a trick: write 

€ 

y =
dx
dt

, because this gives d
2x
dt2

=
d
dt

dx
dt

!
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dy
dt

. This lets us rewrite the 2nd order derivative as a first 

order derivative, and hence our 2nd order ODE as a coupled pair of 1st order ODEs (i.e. a two dimensional system): 

 

€ 

dx
dt

= y

dy
dt

= −ω2x
 

 
This approach can be extended to reduce an nth order ODE to n coupled 1st order ODEs.

 
 
 

Partial differential equations involve two or more independent variables (such as time and space), e.g. 

€ 

∂y
∂t

= f (y, t, x) +D ∂
2y
∂x 2

    

where x represents a spatial co-ordinate. The second term on the right hand side of this reaction-diffusion 
equation depicts diffusion of y in space. PDEs are the topic of BMA 774 
 



€ 

dx
dt

= y

dy
dt

= −xy

General form of n dimensional first order model 
 

  

€ 

dx1
dt

= f1 (x 1, x 2,K, xn ,t)

dx2
dt

= f2 (x 1, x 2,K, xn ,t)

M

dxn
dt

= fn (x 1, x 2,K, xn ,t)

 

 
Model is linear if the RHS are linear combinations of the xi , i.e. are of the form 

  

€ 

fi (x 1, x 2,K, xn ,t) =αi1x1 +K+αinxn +βi .  
This means the xi only appear raised to the first power and there are no products of two or more xi.  
NOTE: The a and b can be functions of time but not of x. 
 

Linear: 

€ 

dx
dt

= y

dy
dt

= −ω2x
 

Nonlinear:   

 

        

 
 
Linear systems are easier to solve than nonlinear systems. (Many math courses will focus on linear ODEs for this reason.) 
 
Reason: in some sense, we can break down a linear problem into smaller parts, each of which can be solved more easily, and 
can then put the parts back together to give a solution to the whole problem. This is not the case for nonlinear systems. 
 
(Replacing sin x by x  in the nonlinear pendulum model gives the linear SHO model. “Linearization” takes us from a model 
that is not easy to solve to a model that is easy to solve. This is an important approach that we will use quite often in 771.) 
 
 
Autonomous and Non-Autonomous Systems 
 
If the right hand side of the ODE does not depend explicitly on time, i.e. t does not appear on the RHS, then the system is 
autonomous. Otherwise, it is non-autonomous.  
 

Some people use the term forced to describe a non-autonomous system. One common form of forcing involves a 
periodic function, e.g. a forced pendulum. In some contexts we talk about “seasonal forcing”. 
 
(The right hand side of an autonomous ODE depends implicitly on time via the state variables.) 

 
We will focus on autonomous systems. (It turns out that they have some nice properties…) 
 

We can always convert a non-autonomous system to an autonomous one, at the cost of adding an extra dimension. 
 
For example, 

€ 

˙ x = f (x,t) .  
 
Write 

€ 

˙ z = 1, which gives z = t + c . c is some constant; set it equal to zero. 
 

Then we can rewrite the non-autonomous ODE as the autonomous system: 

€ 

˙ x = f (x, z)
˙ z = 1

 

  
 

€ 

dx
dt

= −x2

€ 

dx
dt

= y

dy
dt

= −
g
L
sin x

Simple harmonic oscillator 

Simple pendulum 


