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Plan	for	Today’s	Lecture	
	

		
•  Very	brief	recap	of	last	week	
•  Data:	Mo8va8ng	us	to	look	at	stochas8c	models	
•  Results	from	simula8ons	of	stochas8c	SIR	models	
•  Invasion	of	infec8on:	branching	process	theory	
•  Persistence	of	endemic	infec8on:		

	 	es8ma8ng	variability	about	endemic	equilibrium	
	 	moment	equa8ons	(and	moment	closure)	as	one	approach	

•  Kurtz’s	results	
	
	



Recap:	Determinis9c	SIR	models	
	

		
	

	

	

	
	

Can	consider	SIR	with	or	without	demography			(epidemic	vs	endemic	seMngs)	
	
•  Invasion	behavior	understood	by	assuming	S	≈	N	,	which	converts	the	nonlinear	

transmission	term	βSI/N	into	the	linear	βI							linear	approxima9on	

	Leads	to	the	no8on	of	basic	reproduc8ve	number	R0,	and	the	invasion	threshold	R0	=	1	

	

•  Endemic	behavior:	existence	of	a	stable	endemic	equilibrium	if	R0	>	1	

7 Persistence of Infection: The SIR Model with Demography and

Endemic Infections

In order for infections to persist, the susceptible population must be replenished. This could be due
to loss of immunity (recovered individuals become susceptible after some time– as in the so-called
SIRS model) or by births.

We make a simple set of assumptions:

• there is a constant per-capita birth rate µ (this means that rate at which susceptibles enter
the population is µN).

• the infection is non-fatal (that means that death rates are independent of disease status)

• the death rate is constant and equals the birth rate (this means that the population size will
remain constant).

The constant death rate assumption (which echoes the assumption we made about recovery) means
that the distribution of lifespans is exponential, with average lifespan, L, equal to 1/µ. This as-
sumption is known as type II mortality. (This distribution is unlikely to be realistic for populations
in developed countries, where lifespans tend to be more closely distributed around the average.
This is better modeled by what is known as type I mortality, in which it is assumed that everyone
has an identical lifespan.)
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Figure 13: Flowchart showing movement between classes in the SIR model with demography.

The model can be described by the following set of di↵erential equations

Ṡ = µN � �SI/N � µS (38)

İ = �SI/N � (� + µ)I (39)

Ṙ = �I � µR, (40)
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dt

= µN −
βSI
N

−µS

dI
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N

−γ I −µI

dR
dt

= γ I −µR



Data:	Measles	Incidence	vs	SIR	model	with	Demography?	
	

		
Measles	incidence	in	3	Bri8sh	ci8es	before	the	introduc8on	of	measles	vaccine	(late	60s)	
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Figure 24: Measles incidence data (fortnightly numbers of cases) for three British cities: London
(approx. population size 3 to 5 million), Birmingham (approx. population size 1 million) and
Oxford (approx. population size 100 000). The timeseries covers the dates 1944 through 1967: this
final date is around the time when mass vaccination against measles was introduced in the U.K.
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Data:	Measles	Incidence	vs	SIR	model	with	Demography?	
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Figure 24: Measles incidence data (fortnightly numbers of cases) for three British cities: London
(approx. population size 3 to 5 million), Birmingham (approx. population size 1 million) and
Oxford (approx. population size 100 000). The timeseries covers the dates 1944 through 1967: this
final date is around the time when mass vaccination against measles was introduced in the U.K.
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which can be re-written as

⇥3 + (� + ⇧)
�

⇥2 + µR0⇥ + µ(R0 � 1)
�⇧

� + ⇧

⇥
= 0. (73)

In appendix C of Anderson & May, it is stated that this cubic has an approximate root, ⇥ ⇤ �(�+⇧)
and that the remaining roots are obtained by solving the quadratic between the braces. (This can be
demonstrated by examining the limit µ⌅ 0 in more detail.) Notice that the root�(�+⇧) represents
rapidly decaying behavior as its value is large and negative, and that the new quadratic looks not
unlike the one we obtained when thinking about the behavior near the endemic equilibrium of the
SIR model. The one di�erence between the quadratics is that the constant term in the SIR case
was given by µ(R0 � 1)/⌃ , whereas we now have µ(R0 � 1)/(⌃ + ⌃ �). Hence we again have damped
oscillations with the same damping time but whose period is given by 2⌅

⇤
A(⌃ + ⌃ �) . Inclusion of

the latent period increases the period of the damped oscillations about the endemic equilibrium.

10 Comparing the SIR Model to Reality

Since we have been discussing the behavior of the SIR model in the setting of a childhood infection,
we shall look at data showing the incidence of measles in di�erent locations.

In the data, we see:

• Sustained oscillations. Measles epidemics occur with a two-yearly (biennial) period in
most cases. In some instances, annual epidemics are seen, while in others, epidemics occur
every 3 years (triennial).

• Some Irregularities. The peak incidences di�er between outbreaks in the same city.

• Breaks in the chain of infection. The infection can undergo ‘fadeout’ following an epi-
demic as the number of infectives falls to low levels in the ‘troughs’ between epidemics.

What does the SIR model do? It exhibits damped oscillations to an endemic equilibrium. The
period of these oscillations is given by 2⌅

⇧
A⌃ . For measles, with an R0 of 15 and a 7 day average

duration of infectiousness (=7/365 years), the average age at infection is 5 years if we assume a 75
year lifespan. The period of the damped oscillations is then equal to 2⌅

⇤
5/(7/365) = 2⌅

⇧
0.1 ⇤

1.98 years.

The SIR model correctly predicts the period of the oscillations, but incorrectly predicts that they
are damped. We need to look for mechanisms that could lead to the maintenance of oscillatory
behavior. It was originally thought that the inclusion of an exposed class could achieve this, but
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SIR	model	(or	SEIR	model)	with	demography	instead	predicts	damped	oscilla8ons	to	
equilibrium	
	
What	are	we	missing?	

	1.	Stochas8c	effects			

	2.	Seasonal	forcing	:	transmission	is	higher	during	school	terms	than	vaca8ons	
	

	

	



Stochas9city	in	Disease	Models	
	

		
	
	
	

	

	

Individuals	are	discrete	
	
Rather	than	having	con8nuous	flow	(e.g.)	from	S	to	I,	have	discrete	transi8ons	
	
Reinterpret	the	transi8on	rates	of	ODE	model	(state	space								)	as	transi8on	
rates	of	a	con8nuous-8me	Markov	process	(state	space																							)	
	
	
	
	
	
	
	
Stochas8c	effects	due	to	finite	popula8on	size:	demographic	stochas8city	

	 	 	 	 	 	 	 	 	 	 	 		“intrinsic	stochas8city”	

R2

{0, 1, 2, . . . }2



Stochas9city	in	Disease	Models:	Simula9on	Results	
	

		
	
	
	

	

	

We	have	seen	how	to	simulate	this	sort	of	model	(Gillespie	algorithm)	
	
Five	realiza8ons	of	stochas8c	SIR	model	without	demography:	
	
N=1000,	β=200,	γ=100	
One	ini8al	infec8ve,	rest	of	
popula8on	suscep8ble	
	
Rapid	ex8nc8on	seen	in	2	of	
the	5	realiza8ons		
	
The	other	3	realiza8ons	follow	
trajectories	that	are	much	
like	the	ODE	model,	but	exhibit	
some	variability		
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Figure 27: Five realizations of the SIR model with demographic stochasticity in a closed population.
One infective is introduced into an otherwise susceptible population at time t = 0. Notice that
the infection quickly goes extinct in two of the five realizations. Parameter values are as follows:
N = 1000, � = 200 and � = 100.

We now turn to a situation in which we initially introduce five infectives (figure 29).

The main di↵erence we see is that the probability of a major outbreak is much larger. Notice that
some substantially-sized outbreaks are seen even in the case where R

0

= 0.9. We also see that the
variability in the outbreak sizes is much smaller when R

0

= 2 compared to R
0

= 1.5.

The essential di↵erence between “minor” and “major” outbreaks of the infection becomes clear
when simulations are repeated for di↵erent population sizes. Figure 30 illustrates the introduction
of one infective into a population of size 10000. Although broadly similar patterns are seen as before,
we see two important features. The minor outbreak distributions remain roughly unchanged: the
sizes of these outbreaks do not scale with the population size (this is unsurprising since “minor”
outbreaks do not get the chance to “see” most of the population). In contrast, the sizes of the
major outbreaks are larger for the bigger population. The major outbreaks a↵ect a certain fraction
of the population, and so their sizes scale with the population size.

Notice that this di↵erent scaling between minor and major outbreaks makes it easier to distinguish
between the two for larger population sizes (compare the R

0

= 1.2 panels between figures 28 and
30). Also notice that the major outbreak sizes are more tightly centered around their mean for the
larger population size.

To summarize: compared to the deterministic situation, there is not such a clear-cut threshold
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Outbreak	Size	Distribu9ons	
	

		
	
	
	

	

	

SIR	model	without	demography,	N=10000,	one	ini8al	infec8ve	
	
Outbreak	size	distribu8ons	across	1000	realiza8ons	for	R0=	0.9	,	1.2,	1.5	and	2.0	
	
Note	large	peak	at	size	1	
(no	secondary	cases!)	
	
	

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000 7000
0

100

200

300

400

500

600

700

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

50

100

150

200

250

300

350

400

450

500

Figure 30: Outbreak size distributions with one infective introduced into a population of 10000.
R

0

taken to be 0.9, 1.2, 1.5 and 2.0. Notice that the graphs have di↵erent scales on their axes.
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Stochas9city	in	Disease	Models:	Simula9on	Results	
	

		
	
	
	

	

	

Ten	realiza8ons	of	stochas8c	SIR	model	with	demography:	
	
	
	
	
	
	
	
N	=	107,	parameter	values		

Ini8al	condi8ons	chosen	to	be	reasonably	close	to	endemic	equilibrium	
	
Rather	than	sekle	down	into	endemic	equilibrium,	individual	realiza8ons	
con8nue	to	fluctuate	due	to	stochas8city	

	fluctua8ons	are	rela8vely	large,	despite	total	popula8on	of	ten	million!	
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Figure 31: (a) Numbers of infectives seen in ten realizations of the stochastic SIR model for
N = 107. Initially, the numbers of susceptibles and infectives were taken to be close to the
equilibrium, (S⇤, I⇤), of the corresponding deterministic model, with S = 1.05S⇤ and I = 0.8I⇤.
(b) Estimates of the average (solid line) and standard deviation (illustrated as mean ± standard
deviation) of the number of infectives seen in the stochastic model, obtained by averaging over 1000
realizations of the model, each of which were started at the same initial condition.
Parameter values are as follows: µ = 1/70 year�1, � = 50 year�1, � = 750 year�1.
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Figure 31: (a) Numbers of infectives seen in ten realizations of the stochastic SIR model for
N = 107. Initially, the numbers of susceptibles and infectives were taken to be close to the
equilibrium, (S⇤, I⇤), of the corresponding deterministic model, with S = 1.05S⇤ and I = 0.8I⇤.
(b) Estimates of the average (solid line) and standard deviation (illustrated as mean ± standard
deviation) of the number of infectives seen in the stochastic model, obtained by averaging over 1000
realizations of the model, each of which were started at the same initial condition.
Parameter values are as follows: µ = 1/70 year�1, � = 50 year�1, � = 750 year�1.
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When	is	Demographic	Stochas9city	Important?	
	

		
	
	
	

	

	

Simula8on	suggests	demographic	stochas8city	can	be	important	during	an	ini8al	
invasion	phase	and	about	endemic	equilibrium	
	
•  Can	we	understand	when	demographic	stochas8city	will	be	important?	
	
•  Can	we	es8mate	impact	of	demographic	stochas8city?	
	
•  What	is	the	rela8onship	between	stochas8c	and	determinis8c	model?	

(When	do	we	have	to	use	a	stochas8c	descrip8on?)	



Key	Point:	Interrup9on	in	Transmission	Chain	
	

		
	
	
	

	

	

	
If	we	have	few	infec8ves,	there	would	be	a	chance	that	they	all	recover	before	
transmiMng	infec8on	
	
e.g.	one	infec8ve,	giving	rise	to	infec8ons	at	per-capita	rate	βS/N,	but	recovering	

	at	per-capita	rate	γ	
	
What	is	the	probability	that	they	recover	before	transmiMng	infec8on?	

	 	(compe8ng	hazards	calcula8on)	
	
	



When	is	Demographic	Stochas9city	Important?	
	

		
	
	
	

	

	

Transmission	chain	can	be	broken	even	if	R0	>	1	
		

In	a	stochas8c	model,	invasion	and	persistence	is	no	longer	guaranteed	by	R0	>	1	
	
Interrup8on	of	transmission	most	likely	when	number	of	individuals	is	“small”	
	
•  During	the	ini8al	invasion	period	
•  Following	a	large	outbreak	(e.g.	ini8al	invasion	outbreak)	when	I	crashes	
•  Endemic	phase	
	
	
We	shall	first	look	at	ini8al	invasion	period,	using	Galton-Watson	branching	

	process	theory	



Probability	Genera9ng	Func9on	(pgf)	
	

		
Let	X	be	a	random	variable	on	the	non-nega8ve	integers	with	p.m.f.	pi		

Probability	genera8ng	func8on	
	

	 	 	 	We	shall	drop	the	subscript	X	if	there	is	no	possibility	of	confusion	

Pgf	is	a	way	of	summarizing	an	en8re	probability	distribu8on	using	a	single	func8on	of	a	
“dummy	variable”	s.	

	
Example:	Poisson	random	variable	X	

	 	 	with	mean	λ	
	

GX(s) := E(sX) =
1X

i=0

si pi

pi =
�ie��

i !

GX(s) =
1X

i=0

si
�ie��

i !

= e��
1X

i=0

(s�)i

i !

= e��es� = e�(s�1)



Proper9es	of	Probability	Genera9ng	Func9ons	
	

		
1.  	GX(0)	=	Prob(X	=	0)	

2.  		

3.  	GX(s)	is	concave	up	on	[0,1]	

4.  Deriva8ve	with	respect	to	s	:	
		

5.  Variance:	

6.  If	X	and	Y	are	independent	random	variables,	then	
	 	result	generalizes	to	sum	of	n	independent	r.v.	

7.  Let	X1,	…	XN	be	i.i.d.	r.v.	with	common	genera8ng	func8on	GX(s),	and	let	
N	be	a	non-nega8ve	random	variable	that	is	independent	of	the	Xi	with	pgf	GN(s)	
then	Y	=	X1+…+XN	has	genera8ng	func8on		

	
Result	6	describes	the	pgf	of	a	sum	of	a	fixed	number	of	iid	random	variables,	while		
result	7	describes	the	pgf	for	the	sum	of	a	random	number	of	iid	random	variables	

GX(1) =
1X

i=0

pi = 1

G 0
X(1) =

 1X

i=0

i si�1 pi

!�����
s=1

=
1X

i=0

i pi = E(X)

G 00
X(1) +G 0

X(1)� {G 0
X(1)}2 = Var(X)

GX+Y (s) = GX(s)GY (s)

GY (s) = GN (GX(s))



Examples	
	

		Geometric	r.v.	thinks	about	successive	independent	Bernoulli	trials,	each	of	which	has	
	probability	p	of	success,	probability	1-p	of	failure,	and	8ming	of	first	success	

	
Two	slightly	different	versions:	

	X	:	number	of	failures	before	first	success	
	Y	:	number	of	trial	on	which	first	success	happens	
	 	Y	=	X	+	1	
	 	 	 	 		leads	to		

	
	 	 	 	 	 	gives	

	
Note:	could	have	derived	pdf	of	Y	from	that	of	X:	

	 	Y	=	X	+	1	=	X	+	Z,	where	Z	is	a	r.v.	that	equals	one.	Pgf	of	Z	is	s,	so	
	 		GX(s)	=	s	GY(s)	

Prob(X = i) = (1� p)ip GX(s) =
p

1� s(1� p)

GY (s) =
ps

1� s(1� p)
Prob(Y = i) = (1� p)i�1p



Galton-Watson	Branching	Process	
	

		
	
	
	

	

	

Consider	chain	of	infec8on	that	starts	with	one	ini8al	infec8ve	
Ask	the	ques8on:	does	this	chain	of	infec8on	go	ex8nct	or	not?	
Employ	a	discrete	8me	descrip8on	in	terms	of	“genera8ons”	

	loses	temporal	informa8on,	but	this	is	fine	if	we	are	interested	in	whether	infec8on	
	spreads	or	goes	ex8nct	

	
	
	
	
	
	
	
An8cipate	(on	average)	a	geometric	growth/decay	process,	depending	on		
R0	being	greater/less	than	1;	Number	of	individuals	in	genera8on	n	to	be	R0n	 		

The branching process formulation considers the chains of infection that start with a single infective.
In the language of branching processes, the secondary infections due to a given infective are called
the o↵spring of an individual. (The branching process was originally developed to ask the question
of whether a given family name would go extinct over time: much of the terminology of this
theory derives from this genealogical context.) Even though the epidemic is really a continuous
time process, we can create a discrete time process in terms of generations (see figure 33). These
‘generations’ refer to whether an infection is directly due to the original infective (first generation),
their o↵spring (second generation), and so on. Notice that most of the temporal information is
lost in this description: the temporal order of infections can di↵er from their order in terms of
generations.

Generation

0

1

2

3

Figure 33: Branching process description of the initial stages of an outbreak.

We assume that the numbers of o↵spring (secondary infections) of each infective can be described
by independent identically distributed random variables, X. This implies that the fate of di↵erent
lineages (chains of infection) are independent. Notice how these assumptions are reliant on the
linear description of the initial behavior of the epidemic: if the depletion of susceptibles were being
accounted for then the average number of secondary infections would decrease over time. The
numbers of o↵spring of di↵erent infectives would neither be independent nor identically distributed.

The main result of branching process theory states that the probability of the eventual extinction
of the process, starting with one infective individual in generation zero, is given by the smallest
non-negative root of the equation

G(s) = s, (86)

where G(s) is the probability generating function of the o↵spring distribution. Furthermore, the
theory states that the probability of eventual extinction is 1 if the average number of o↵spring
(secondary infections) is less than one, and is less than one if the average number of o↵spring is
greater than one.
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Galton-Watson	Branching	Process	
	

		
	
	
	

	

	

Assume	numbers	of	“offspring”	(secondary		
infec8ons),	Z	,	of	individuals	are	independent,		
iden8cally		distributed	random	variables	
	
Important	comment:	this	assump8on	means	we	neglect	deple8on	of	suscep8bles		

	(which	would	reduce	number	of	secondary	infec8ons	as	epidemic	proceeds)	
	 	Branching	process	is	describing	the	early	stages	of	an	epidemic	
	 	as	in	the	determinis=c	analysis	of	invasion,	we	use	a	linear	approxima=on			

		
Offspring	distribu8on:	Common	probability	mass	func8on,	pi	,	and	pdf	GZ(s)	

	We	assume	p0	>	0	and	that	no	pi	=	1	(removes	trivial	cases)	
	

Xn	:	total	number	of	offspring	in	genera8on	n	
	

Key	ques8ons:	what	happens	to	Xn	as																	?			What	is	the	probability	of	
	lineage	going	ex8nct?	

The branching process formulation considers the chains of infection that start with a single infective.
In the language of branching processes, the secondary infections due to a given infective are called
the o↵spring of an individual. (The branching process was originally developed to ask the question
of whether a given family name would go extinct over time: much of the terminology of this
theory derives from this genealogical context.) Even though the epidemic is really a continuous
time process, we can create a discrete time process in terms of generations (see figure 33). These
‘generations’ refer to whether an infection is directly due to the original infective (first generation),
their o↵spring (second generation), and so on. Notice that most of the temporal information is
lost in this description: the temporal order of infections can di↵er from their order in terms of
generations.
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We assume that the numbers of o↵spring (secondary infections) of each infective can be described
by independent identically distributed random variables, X. This implies that the fate of di↵erent
lineages (chains of infection) are independent. Notice how these assumptions are reliant on the
linear description of the initial behavior of the epidemic: if the depletion of susceptibles were being
accounted for then the average number of secondary infections would decrease over time. The
numbers of o↵spring of di↵erent infectives would neither be independent nor identically distributed.

The main result of branching process theory states that the probability of the eventual extinction
of the process, starting with one infective individual in generation zero, is given by the smallest
non-negative root of the equation

G(s) = s, (86)

where G(s) is the probability generating function of the o↵spring distribution. Furthermore, the
theory states that the probability of eventual extinction is 1 if the average number of o↵spring
(secondary infections) is less than one, and is less than one if the average number of o↵spring is
greater than one.
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Galton-Watson	Branching	Process:	theory	
	

		
	
	
	

	

	

Let	Zn,i		be	r.v.	describing	offspring	in	genera8on	n		
	for	i	’th	individual	in	genera8on	n-1	

	
Number	of	individuals	in	genera8on	n	is	given	by	
	
Because	offspring	are	iid,	we	have	the	sum	of	Xn-1		iid	rv	[random	sum]	
	
So:	
	
Apply	this	result	repeatedly,	get	
	
	

	 	Genera8ng	func8on	for	total	number	of	individuals	in	genera8on	n	is	the	n-fold	
	 	 	iterate	of	the	pgf	of	the	offspring	distribu8on	

Xn =

Xn�1X

i=1

Zn,i

GXn(s) = GXn�1 (GZ(s))

GXn(s) = GZ (GZ(· · · (GZ(s)) · · · ))

= G(n)
Z (s)



Ex9nc9on	Probability	for	G-W	Branching	Process	(sketch)	
	

		
	
	
	

	

	

Define	sn	=	Prob(	Xn	=	0	)	
	
Easy	to	see	that																																											:	non-decreasing	sequence,	bounded	

	above	by	1	
Therefore																														exists	and	is	≤	1		
	
Condi8on	on	number	of	individuals	in	genera8on	1:	
	
	
	
	
	
	
Limi8ng	value									sa8sfies	the	fixed	point	equa8on				
	

s0  s1  s2 · · ·  1

lim
n!1

sn = s1

sn =

1X

k=0

Prob(Xn = 0|X1 = k)Prob(X1 = k)

=

1X

k=0

skn�1 pk

= GZ(sn�1)

Probability	that	k	lineages	are	all	
ex8nct	at	genera8on	n	–	1	,	each	
star8ng	from	1	individual	

s1 s1 = GZ(s1)
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Ex9nc9on	Probability	for	G-W	Branching	Process	(sketch)	
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Solve	GZ(s)	=	s	:			look	for	intersec8ons	between	graphs	of	y	=	x	and	y	=	GZ(x)	
	
Recalling:	GZ(0)	=	p0	>	0		,	GZ(1)	=	1	,	G’Z(1)	=	E(Z)	=	R0		,		GZ(x)	is	concave	up	…	
	

…	get	two	qualita8vely	different	pictures	depending	on	whether	R0	<	1	or	>	1	:	
	

	 	 	R0	<	1 	 	 	 	 	 	 	 	 	R0	>	1	
	
	

	 	y	=	GZ(x)	
	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 					y	=	GZ(x)	

	 	 		



Key	Result	for	G-W	Branching	Process	
	

		
	
	
	

	

	

Probability	of	eventual	ex8nc8on	of	the	process	is	given	by	the	smallest	 	 	
	non-nega8ve	root	of	GZ(s)	=	s	,	

	

This	probability	is:	
•  1	if	average	number	of	offspring	(i.e.	R0)	is	less	than	one	
•  less	than	1	if	R0	is	greater	than	one	
		
	



Offspring	Distribu9on	for	SIR	Model?	
	

		
	
	
	

	

	

For	a	given	infec8ve,	secondary	infec8ons	are	produced	at	rate	βS/N	≈	β	(linear	approx.)	
	 	 	 	 	 	 	 	 	 	 	 	(Poisson	process	with	rate	β)	

Dura8on	of	infec8on	is	exponen8ally	distributed	with	mean	1/γ	
	
If	dura8on	of	infec8on	was	fixed	at	1/γ,	number	of	offspring	would	be	Poisson	
distributed	with	mean	β/γ	=	R0	
	
Calculate	offspring	distribu8on	by	condi8oning	on	dura8on	of	infec8on:	
	
	

where	fT(t)	is	the	pdf	of	the	distribu8on	of	dura8ons	of	infec8on	

	
	
Reduces	to	an	integral	of	τkexp(-(β+γ)τ),	but	perhaps	easier	to	directly	calculate	pgf:	

Prob(Z = k) =

Z 1

0
Prob(Z = k|T = ⌧) fT (⌧) d⌧

Prob(Z = k) =

Z 1

0

(�⌧)ke��⌧

k!
�e��⌧d⌧

Gz(s) =
1X

k=0

sk
Z 1

0

(�⌧)ke��⌧

k!
�e��⌧d⌧



Offspring	Distribu9on	for	SIR	Model?	
	

		
	
	
	

	

	

	
	
Switch	order	of	summa8on	and	integra8on	and	then	do	summa8on	(exponen8al	series)	
	
	
Gives	
	
	
	
which	we	recognize	as	the	pgf	of	a	geometric	distribu8on	with	mean	R0	
	
	
	

Gz(s) =
1X

k=0

sk
Z 1

0

(�⌧)ke��⌧

k!
�e��⌧d⌧

Gz(s) =

Z 1

0
es�⌧e��⌧�e��⌧d⌧

Gz(s) =
�

� � �(s� 1)

=
1

1�R0(s� 1)



Applica9on	of	G-W	bp	Result	to	SIR	Model	
	

		
	
	
	

	

	

Probability	of	eventual	ex8nc8on	of	the	process	is	given	by	the	smallest	 	 	
	non-nega8ve	root	of	GZ(s)	=	s	,	

	

This	probability	is:	
•  1	if	average	number	of	offspring	(i.e.	R0)	is	less	than	one	
•  less	than	1	if	R0	is	greater	than	one	
		
For	our	SIR	model,	the	number	of	secondary	infec8ons	is	geometrically	
distributed,	with	mean	R0	
	
	
Solving	GZ(s)	=	s		gives	ex8nc8on	probability	as	s	=	1	or	s	=	1/R0	

	 	 	 	If	R0	<	1,	s	=	1	is	relevant	solu8on;	if	R0	>	1	it’s	s	=	1/R0	

GZ(s) =
1

1 +R0(1� s)



Linear	vs	Nonlinear	Model	
	

		
	
	
	

	

	

Summary	for	linear	model	with	geometric	offspring	distribu8on:		
Star8ng	with	one	infec8ve,	then	

	if	R0	<	1	,	epidemic	process	dies	out	with	probability	1	
	if	R0	>	1	,	epidemic	process	dies	out	with	probability	1/R0	

				
In	the	real	world,	the	linear	approxima8on	breaks	down	once	there	is	appreciable	
deple8on	of	suscep8bles…	
	
But	if	this	has	happened,	the	number	of	infec8ves	will	have	grown	sufficiently	that	
will	be	in	a	regime	where	the	dynamics	is	reasonably	well	described	by	the	
determinis8c	model	plus	some	noise		
	
In	the	full	model,	if	early	ex8nc8on	occurs	(i.e.	during	the	linear	phase),	we	say	there	
has	been	a	“minor	outbreak”.	If	we	avoid	early	ex8nc8on,	we	say	there	has	been	a	
“major	outbreak”	



More	Thoughts	on	Minor/Major	Outbreaks	
	

		
	
	
	

	

	

	
What	are	the	probabili8es	of	minor	and	major	outbreaks	if	we	start	with	some	
general	ini8al	number	of	infec8ves?	(S8ll	assumed	to	be	rela8vely	small.)	
	
	
How	do	the	components	of	the	outbreak	size	distribu8on	represen8ng	minor	and	
major	outbreaks	change	as	the	popula8on	size	N	is	increased?	
	



Outbreak	Size	Distribu9ons,	revisited	
	

		
	
	
	

	

	

Returning	to	our	earlier	pictures	of	outbreak	size	distribu8ons	
	

R0	=	0.9	
	

Only	have	minor	outbreaks	
outbreak	size	distribu8on	is	

	J-shaped		
	
	
R0	>	1		
	

Get	a	mix	of	minor	and	major	
outbreaks	
	

Major	outbreak	distribu8on	
is	centered	on	value	predicted	
by	determinis8c	analysis,	and	
variance	decreases	with	R0	
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Figure 30: Outbreak size distributions with one infective introduced into a population of 10000.
R

0

taken to be 0.9, 1.2, 1.5 and 2.0. Notice that the graphs have di↵erent scales on their axes.
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Figure 30: Outbreak size distributions with one infective introduced into a population of 10000.
R

0

taken to be 0.9, 1.2, 1.5 and 2.0. Notice that the graphs have di↵erent scales on their axes.
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Endemic Dynamics of Stochastic SIR Model  
Deterministic model approached endemic equilibrium when R0>1 
Stochastic model: trajectories fluctuate around deterministic equilibrium 
Number of infectives appears to stays well away from zero if N is large 

enough (here N = 5 million) 

 
 

         

Parameters	representa8ve	of	
measles:	highly	infec8ous	
childhood	disease	with	a	
short	infec8ous	period		
(~	one	week)	

	
	(note:	trajectories	are	shown	at	
discrete	observa8on	8mes,	so	
not	all	jumps	are	shown)	

	
	

	 	 	 	 	 	 	
		



Dynamics of Stochastic SIR Model, II  

Qualitatively different picture when N is 1.75 million:  
Oscillations bring I close to 0, with trajectory hitting horizontal axis 
 

Extinction of infection due to stochastic effects: fadeout 
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Dynamics of Stochastic SIR Model, III  

 
Number of infectives stays well away from zero? 
  
Not exactly: infection goes extinct with probability one for any N, although 

timescale may be astronomical (scales like exp(-aN) ) 
 
Have a quasi-stationary distribution about the endemic equilibrium, but 

eventually leave… 
After extinction, trajectories approach the unstable equilibrium of the 

deterministic system 
         

Back	to	N	=	5	million	
	
	

	 	 	 	 	
	 	 		



Measles: Population Size Dependent Dynamics 

Fortnightly cases of measles in three British cities: London (3-5 
million people), Birmingham (1 million), Oxford (100 000), in the 
era before mass-vaccination 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number	of	cases	in	
Oxford	ozen	falls	to	
zero	between	
outbreaks	

Fadeouts	seen	in	data	
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Measles: Critical Community Size 

Fadeouts rarely occurred for cities of more than a few hundred 
thousand inhabitants (Bartlett, 1950s) 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bolker	&	Grenfell,		
(1995)	Phil.	Trans.	R.	
Soc.	Lond.	B	348,	

309-320.	
	
	

	 	 	 	 	
	 	 		



Stochastic SIR Model: Variability Between Realizations 

Individual realizations fluctuate about endemic equilibrium, drifting out of 
phase over time  
 

Magnitude of fluctuations 
determines fadeout  
probability 
 
 
Average exhibits damped  
oscillations: averaging over 
a collection of realizations 
that are drifting out of phase 
 
Standard deviation 
(calculated across the set 
of realizations) approaches  
a constant 
 

Coefficient of variation ( cv = sd/mean) is a relevant measure of variability 
 

     Lloyd (1996, PhD thesis; 2004, Theor. Popul. Biol. 65:49) 
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Stochastic SIR Model: Variability Between Realizations 

Magnitude of fluctuations ( cv = sd/mean ) scales as 1/√N 
   (central limit theorem type result) 
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Analysis: Kolmogorov Equation 

pt(s,i )   probability that S(t)=s, I (t)=i 
 
Thinking about the time interval [t, t+dt ], how can we end up at (s,i)? 
 
 
 
 
Rearrange and let dt → 0 
 
 
 
 
Linear equations with constant coefficients 
Numerical solution feasible for small N, but rapidly becomes impractical 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



Moment Equations 

Using Kolmogorov equations, can derive equations for rates of change of 
expected values of functions 

 
 
 
For example: 
 
 
 
Equations for 1st order moments: 
 
 
 
Observations: 
1.  Nonlinear transmission term leads to appearance of a 2nd order moment term 
2.  If E(SI) were replaced by E(S)E(I), we would recover the deterministic model 

 but cannot do this because E(SI) = E(S)E(I) + cov(S,I ) 
 

 
 
 
 
 
 
 
 
 
 
 
 



Moment Equations 

Similarly, can derive equations for 2nd order moments 
 

Noting that I → I +1 means that I 2 →I 2 +2I +1 and I → I -1 gives I 2 →I 2 -2I +1 
 
 
 
 
 
Second order moment equations involve third order moments 
 
Third order moment equations would involve fourth order moments, etc 
 
 
For this moment equation approach to be useful, we need to truncate the set of 

equations at some order, requiring a moment closure approximation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Moment Closure 

Whittle (1957): if the process was linear, realizations would follow a multivariate 
normal distribution…  so he suggested the use of a multivariate normal 
approximation to close moment equations 

 
Assume distribution of realizations at any point in time is multivariate normal (MVN) 
 
Third order central moments of MVN distribution are zero  
e.g. E( [S-E(S)] [ I -E(I) ]2 ) = 0 
 
Multiply out, gives an algebraic relationship between third order moment E(SI 2) and 

lower order moments 
 
Substitute into moment equation set 
 
Limit theorems of Kurtz (1970, 1971) provide justification for this approach 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Moment Closure 

Moment equations for SIR model, in terms of variances and covariances 
 
 
 
 
 
 
 
 
 
 
 
Comment: Standard deterministic ODEs emerge by making a lower order moment 

closure assumption, namely 2nd order central moments are zero (set variances 
and covariances to zero… in other words, assume no variation between 
realizations) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Moment Closure 

Works well… provided population size is large enough 
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Solu8on	of	moment	equa8ons	blows	up	if	N	is	too	small	
(Cri8cal	value	of	N	:	saddle	node	bifurca8on,	with	stable	and	unstable	branches	colliding)	
	
Also	get	divergence	for	larger	N	if	we	start	too	far	from	equilibrium	



Why does MVN break down? 

If variability is too large (cv ≈ 1), Normal distribution will have appreciable 
weight for negative values of I … but I must be non-negative. 

 
 
 
 
 
 
 
 
Could turn to another closure approximation, e.g. Keeling’s “multiplicative 

moment closure”, which imposes relationship based on log-Normal 
distribution (e.g. Keeling, 2000) 
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Log-Normal Moment Closure 

Log-Normal moment closure approximation 
doesn’t blow up in this case, although it does 
underestimate variability 
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where 
 
 
 
 
 
 
 
 
 
 
 
 
(Apart from this slide, 

we will focus on 
MVN 
approximation) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Recap: Seasonally Forced Deterministic Model 

Transmission of measles has a strong seasonal component  
(different levels of mixing of children during school terms and vacation) 

 

Modeled by allowing β to vary seasonally 
 
Seasonally forced SIR model exhibits multi-annual oscillations: 
Weak seasonality typically gives annual oscillations, amplitude increases with β1 
 
 
 
 
 
 
Period-doubling bifurcation seen as β1 is further increased, giving biennial oscillations  
 
Important point: seasonality imposes a phase on solutions, unlike the non-forced 

model 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

€ 

β(t) = β0 1+ β1 cos2π t( )



Seasonally Forced Stochastic Model 

Dynamics depends strongly on population size 

e.g. three realizations from models with weak seasonality: 
        N = 106.5                                                         N = 108.5 

 
 
 
 
 
 

 
 
Note: the two graphs would be identical (up to scaling on vertical axis) for the deterministic model 

 
Dynamics are a superposition of: 
•  deterministic annual oscillations (specific phase), amplitude independent of N 
and  
•  stochastic fluctuations (no specific phase), amplitude scales as N-1/2 



Seasonally Forced Stochastic Model: Average Behavior and Variability 

•  Variability changes over the course of a year 
•  Relative importance of deterministic and stochastic components of dynamics depends on N 
•  Deterministic dynamics more apparent in average behavior (stochastic behavior is 
“averaged out” when we average over a collection of out-of-phase stochastic realizations) 

 
 
  

N = 106.5   
   

Note: stochastic variation 
(envelope height) greater than 
deterministic variation (amplitude 
of oscillations in average)                                                      
 
 

N = 108.5  
   

Stochastic variation (envelope  
height) greater than deterministic  
variation (amplitude of oscillations  
in average)                                                      
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Automating the Generation of Moment Equations 

Deriving moment equations by hand is cumbersome. Fortunately, we can automate the process. 
 
Brief outline: process involves moment generating function (MGF) 
 
Important property of MGF: coefficient of θ1

mθ2
n in the power series expansion of MGF is 

proportional to E(SmIn). 
 
 
Multiply the Kolmogorov equation by exp( θ1s(t)+ θ2i(t) )  and sum over s(t), i(t) 

After some manipulation, get a PDE satisfied by MGF: 
 

 
 
Expand both sides of PDE as a power series in θ1 and θ2 , then equating coefficients of  θ1

mθ2
n 

on both sides gives a set of ODEs for the time evolution of the moments 
 
 

€ 

M θ1,θ2, t( ) ≡ E eθ1S t( )+θ 2I t( )$ 
% 
& 

' 
( 
) 

3 Derivation of Moment Equations

If the probability that the number of susceptibles and infecteds equals (s, i) at time t is

written pt(s, i), then the Kolmogorov forward equations (??) (also known as the master

equations) of the system can be obtained in the standard way: relate pt+dt(s, i) to pt by

considering the possible transitions which could occur in the time interval [t, t + dt] and let

dt tend to zero, giving

dpt(s, i)

dt
= µNpt(s� 1, i) + µ(s + 1)pt(s + 1, i)

+�(s + 1)(i� 1)pt(s + 1, i� 1) + (⇥ + µ)(i + 1)pt(s, i + 1)

� {µN + µs + �si + (⇥ + µ)i} pt(s, i). (3)

(Notice that, since s and i must be non-negative, pt(s, i) is defined to be zero if either s or

i is negative.)

For small population sizes, this set of coupled di�erential equations can be integrated numer-

ically to study the evolution of the probability distribution of S and I (?), but this quickly

becomes impractical as the population size increases.

The system of forward equations (3) can be used to derive formulae for the rates of change

of the expected numbers of susceptibles and infectives, E(S) and E(I), and higher moments

such as the variances of the number of susceptibles and infectives and the covariance be-

tween the susceptible and infective numbers. The most convenient approach for our purposes

involves the use of the moment generating function (MGF), M(⇤1, ⇤2; t), defined as

M(⇤, t) = E
�
e�1S+�2I

⇥
. (4)

The equation for the time evolution of the MGF is derived by multiplying Eq. (3) by

exp(⇤1s + ⇤2i) and summing over s and i, giving

⌅M

⌅t
= (�/N)(e�2��1 � 1)

⌅2M

⌅⇤1⌅⇤2
+ µ(e��1 � 1)

⌅M

⌅⇤1
+ (⇥ + µ)(e��2 � 1)

⌅M

⌅⇤2
+ µN(e�1 � 1)M

Since the moment generating function can be written as

6

M(⇤1, ⇤2) =
⇥⇤

k=0

1

k!

k⇤

j=0

�
k

j

⇥

⇤1
j⇤2

k�jE(SjIk�j), (5)

the expectation of SmIn can be determined from the appropriate coe⇥cient of ⇤1
m⇤2

n in

the expansion of M . Hence, by expanding Eq. (5) in powers of ⇤1 and ⇤2 and equating

coe⇥cients, di�erential equations for the time evolution of the ordinary moments can be

derived (??).

In order to derive equations for the variances and covariances, it is more convenient to

consider the cumulant generating function, K(⇤1, ⇤2, t), defined as the logarithm of the MGF,

K(⇤1, ⇤2, t) = log(M(⇤1, ⇤2, t)), whose coe⇥cients in the series expansion corresponding to

(5) are known as the cumulants. The first two cumulants equal the mean and variance and

the third cumulant is proportional to the skewness.

Equation (5) can easily be transformed into an equation for the time derivative of K, giving

⌅K

⌅t
= �(e�2��1 � 1)

�
⌅2K

⌅⇤1⌅⇤2
+

⌅K

⌅⇤1

⌅K

⌅⇤2

⇥

+ µ(e��1 � 1)
⌅K

⌅⇤1

+(⇥ + µ)(e��2 � 1)
⌅K

⌅⇤2
+ µN(e�1 � 1). (6)

Expansion of Eq. (6) gives the following equations for the time evolution of the moments of

orders one and two

dE(S)

dt
= µN � µE(S)� �E(SI) (7)

dE(I)

dt
= �E(SI)� (⇥ + µ)E(I) (8)

dVar(S)

dt
= µN + µ {E(S)� 2Var(S)} + �{E(SI)� 2E(I)Var(S)

�2E(S)Cov(S, I)� 2TSSI} (9)

dVar(I)

dt
= (⇥ + µ) {E(I)� 2Var(I)} + �{E(SI) + 2E(S)Var(I)

+2E(I)Cov(S, I) + 2TSII} (10)

dCov(S, I)

dt
=�(⇥ + 2µ)Cov(S, I)� �{E(SI)� E(I)[Var(S)� Cov(S, I)]

+E(S) [Var(I)� Cov(S, I)]� TSSI + TSII}, (11)

7



Automating the Generation of Moment Equations, II 

Application of MVN approximation is easier if we work with the cumulant generating function, 
K(θ1 ,θ2

 , t) ≡ ln M(θ1 ,θ2
 , t), because the cumulant generating function of a MVN is a 

quadratic: 
  K(θ1 ,θ2) = θ1E(S)+θ2E(I) +½θ1

2Var(S) +θ1θ2cov(S,I) + ½θ2
2Var(I) 

  
Using Maple, it’s easy to substitute M = exp(K) into the PDE for M, expand and equate 

coefficients 
 
Overkill for doing the SIR model, but for a general population model, it’s easy to convert 

transition information (rate of transition and resulting changes in state variables) for a 
general term that occurs at rate                              and involves changes Xi → Xi+δ i   
into an appropriate term in the PDE: 

 
  
 
So it’s trivial to construct the PDE... 
… and once Maple has expanded and equated coefficients, it will even generate the Matlab 

code (and LaTeX code) 
    see also C.S. Gillespie (2009) IET Syst. Biol. 3:52. 
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from numerical simulation of the stochastic model. We explore in some detail the impact of

including an exposed, but not yet infectious, class of individuals (examining the so-called

SEIR model) and of the inclusion of seasonal variations in the transmission parameter.

This paper is organized as follows: Section 2 briefly outlines the biological background of

the models under consideration and develops deterministic and stochastic formulations of

the models. Section 3 discusses the derivation of moment equations to describe variability

in stochastic formulations of the models, focusing on deployment of the multivariate normal

approximation. Section 4 examines the performance of the moment equations in the well-

known case of the non-seasonal SIR model. Section 5 considers the behavior of seasonally

forced models, and highlights the increased importance of demographic stochasticity in such

models. The first appendix briefly summarizes the development of moment equations based

on the lognormal assumption. The second appendix extends the MVN moment equations

to describe the SEIR model, and illustrates how the inclusion of an exposed class of indi-

viduals reduces variability in the model. A third appendix discusses dynamical di�erences

between the behaviors of the deterministic equations and the MVN moment equations in

the seasonally forced model.

2 Deterministic and Stochastic Model Formulations

IN2

The SIR model and its variants have been central in the mathematical study of epidemics

(???). The population is divided into three classes: susceptible, infectious and recovered, and

the numbers of individuals in these classes are written as S, I and R, respectively. Making

the standard assumptions for an SIR model describing childhood diseases— in which it is

assumed that the infection is non-fatal and confers permanent immunity upon recovery—

in a well-mixed population of constant size, N , (see, for instance, ??), the movements of

individuals between the classes are governed by the few simple rules, and accompanying

parameters, listed in Table 1.
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Moment Equations for Higher Dimension Systems 

m state variables means there are m(m+3)/2 1st and 2nd order moment equations 
 

Automation facilitates use of moment equations for more complex models! 
e.g. SEIR model (3 state variables), SInR (n+1 state variables), n-patch SIR model 

(2n), vector-host model (e.g. mosquito-borne infections) 
 
SIR model with n-stage 

infectious period 
(models less variable infectious  

periods compared to  
exponential--- more realistic) 

 
 
Less variable infectious period 

increases variability, hence 
decreases persistence 
 (Lloyd, Theor. Popul. Biol., 2001) 

(902 equations in moment set for 40-stage model)   
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Origin of the Sustained Fluctuations in the SIR model 

Sustained fluctuations in the stochastic SIR model have long been known, 
as has the basic idea of why they occur: 
  Resonance effect between intrinsic damped oscillatory behavior of the 
 deterministic model and forcing due to demographic stochasticity 

  
Two recent papers have made this idea more concrete: 

 Kuske, Gordillo and Greenwood (2007) “Sustained oscillations via coherence 
resonance in SIR” 
 Alonso, McKane and Pascual (2007) “Stochastic amplification in epidemics” 

 
Employed various approximations to calculate the power spectrum of fluctuations, 
demonstrating the resonant response of the deterministic system to (essentially) 

white noise forcing of demographic stochasticity 
 
McKane’s group has carried out similar analyses for a number of SIR-type models, 

including the n-stage model (Black et al, 2009) 
 

 
 
 
 
 
 
 
 



Why is Measles so Susceptible to Demographic Stochasticity? 

Key epidemiological points  
•   recovery from infection confers permanent immunity 
•     infectious period is short 
•     highly infectious (before vaccination, almost everyone caught measles) 

 
Separation of timescales between short duration of infection (~ one week)  
and slow turnover of susceptible population (lifespan of  ~75 years) 
 
The short duration of infection means that only a small fraction of the 
  population is infected at any given time ( roughly 1/(52*75) ),  

 so even if N is large, the number of infectives is typically small. 
 
 
 
 
 
 
 



Kurtz’s Results 

Results from Kurtz (1970) relates behavior of stochastic model to that of ODE 
 
Considers a family of Markov chains, Xn(t), indexed by parameter n (think: total 

population size) that are “density dependent population processes”, i.e. for 
which transition rates between states x and x+k  have the form   

 
 
Defines        
 
Require fm and F to satisfy some regularity conditions in an open set E 
 

    
 
 
 
 
 
 

F(x) =
X

k

kf(x,k)

|F(x)� F(y)|  ME |x� y|

sup
x2E

X

k

|k|f(x,k) < 1 lim
d!1

sup
x2E

X

|k|>d

|k|f(x,k) = 0

q
x,x+k

= nf(x/n,k)



Kurtz’s Results 

Then: if we have a deterministic trajectory X(s,x0) that starts at x0 , governed 
 by the ODE dX/dt = F(X), that stays in the open set E at least until time t , 
 
then            implies, for every δ > 0 
 
 
 
 
In the large n limit, trajectories of the stochastic model stay close to the 

deterministic trajectory 
 
Doesn’t say how large n has to be. Kurtz 1971 goes further and shows that 

fluctuations about the deterministic model converges (in some sense) to 
a diffusion process 

 
 
 
 

lim
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Diffusion Approximations to Variation About Endemic State 

An alternative approach to the moment equations uses a diffusion 
approximation to estimate variation about the endemic state 
 
Idea is to linearize the system about the endemic equilibrium. Fluctuations are 
then governed by the sum of a linear drift term (towards equilibrium) and a 
diffusion term 
 
Gives a multivariate Ornstein-Uhlenbeck process for the fluctuations; a 
process whose limiting probability distribution is known, and whose variance-
covariance matrix satisfies 

     AΣ+ΣAT = -V 
Here, A is the linear matrix describing the drift (Jacobian matrix of system, 
evaluated at equilibrium), V is the constant diffusion matrix  
 
Variability reflects balance between random effects and restoring force of 
equilibrium 
  



Practical Exercise 1 

Simulate the stochastic SIR model (no demography) and generate time series 
showing trajectories of I(t). 
 
Take γ = 1, different values of R0 = β [think what might be appropriate/interesting 
values to examine], and run each realization until the epidemic ends. I suggest a 
population size of N = 1000 and one initial infective. 
 
Collect 1000 realizations. Plot 5 or 10 realizations and the outbreak size 
distribution. Estimate the probability of a major outbreak from your outbreak size 
distribution. Compare your answer to that predicted by the branching process 
theory. 
 
Repeat for a larger initial number of infectives (3, 5 or 10). 
 
Something interesting to try would be to compare the corresponding deterministic 
model to the average behavior of the stochastic model and to the average of the 
stochastic model conditioned on non-extinction (i.e. take averages over those 
realizations for which I(t)>0 at each point in time) 



Practical Exercise 2 

Write code to simulate a branching process model for Poisson offspring distribution 
with mean R0. Start from one initial individual and allow a realization to continue 
until the number of individuals in a generation reaches 100. 
 

 (Hint to speed up your code: what is the sum of n independent Poisson   
 distributions?) 

 
Show 5 or 10 realizations of the process and the mean behavior across 1000 
realizations. Numerically estimate the probability of extinction of the process. 
Calculate this extinction probability using branching process theory. 
 
Modify your code to simulate the branching process with geometric offspring 
distribution. (Hint: what is the sum of n independent geometric distributions?) 
 
Compare the behavior of the two processes, specifically the probability of 
extinction. 
 


