
Dengue 

•  Viral infection (flavivirus: an arbovirus) that affects humans 
 

          
•  Principal vector: Aedes aegypti   

 
 (the yellow fever mosquito) 

 
•  Day-biting mosquito 

•  Anthropophilic mosquito species: highly associated with humans 
 
Lays eggs in human-associated  
water containers and other places 
where rainwater collects 

 (e.g. blocked rain gutters) 
 
 



Dengue 

•  Viral infection (flavivirus: an arbovirus) that affects humans 
 

          

 
•  Four serotypes of the virus 

 
 Each confers permanent immunity in people 

 
 Temporary cross immunity between serotypes 

 
 Antibody dependent enhancement 

 
 



 Highly Variable Symptoms 

•  Highly variable infection, with wide spectrum of outcomes: 
 
inapparent infection, 
 
mild and severe flu-like illness with severe joint pain  
  “classic dengue”: “break-bone fever” 
 
severe dengue 
 
dengue shock syndrome (DSS) 
dengue haemorrhagic fever (DHF)  
 

•  Untreated, DHF death rate can be 20%+,  
but treatment reduces this to 1%. 
 

•  Antibody-dependent enhancement (ADE)? 
 

Image credits: UN, New York 
Times, unknown 



Dengue Lifecycle 

1.  Adult female mosquito bites infected person 
 

2.  Incubation of virus within mosquito 
extrinsic incubation period ~ 7-14 days 

 (temperature dependent) 
 

3.  Infectious mosquito bites susceptible person 
 

4.  Virus incubates within person 
average intrinsic incubation period ~ 4-5 days 
average human infectious period ~ 4-5 days 
 
(cycle repeats) 
 

Key fact 1 :  Adult female mosquitoes need blood to produce eggs  
 
(Rudyard Kipling: The female of the species is more deadly than the male) 

 

Key fact 2 :  Adult female mosquitoes live for about 3 weeks (highly dependent on conditions) 
 

Key fact 3 :  Lifecycle involves the mosquito biting twice at appropriate times 



 
 
PART I : Data and Descriptive Analyses 



Burden of Dengue 

•  Variability in symptoms hinders assessment of dengue burden based on case data        

•  Attempts to estimate burden reviewed and improved in Bhatt et al. (2013) Nature 
  

 
•  Previously published estimates 

of apparent infections, together 
with credible interval based on a 
statistical risk mapping approach 
applied to an assembly of dengue 
occurrence records 

•  Estimate occurrence of an additional 
294 (217-392) million inapparent 
infections 

•  Can we do better than case data? Yes… see later 
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Dengue is a systemic viral infection transmitted between humans
by Aedes mosquitoes1. For some patients, dengue is a life-threaten-
ing illness2. There are currently no licensed vaccines or specific
therapeutics, and substantial vector control efforts have not
stopped its rapid emergence and global spread3. The contemporary
worldwide distribution of the risk of dengue virus infection4 and its
public health burden are poorly known2,5. Here we undertake an
exhaustive assembly of known records of dengue occurrence world-
wide, and use a formal modelling framework to map the global
distribution of dengue risk. We then pair the resulting risk map
with detailed longitudinal information from dengue cohort studies
and population surfaces to infer the public health burden of den-
gue in 2010. We predict dengue to be ubiquitous throughout the
tropics, with local spatial variations in risk influenced strongly by
rainfall, temperature and the degree of urbanization. Using car-
tographic approaches, we estimate there to be 390 million (95%
credible interval 284–528) dengue infections per year, of which 96
million (67–136) manifest apparently (any level of clinical or sub-
clinical severity). This infection total is more than three times
the dengue burden estimate of the World Health Organization2.
Stratification of our estimates by country allows comparison with
national dengue reporting, after taking into account the probability
of an apparent infection being formally reported. The most notable
differences are discussed. These new risk maps and infection esti-
mates provide novel insights into the global, regional and national
public health burden imposed by dengue. We anticipate that they
will provide a starting point for a wider discussion about the global
impact of this disease and will help to guide improvements in disease
control strategies using vaccine, drug and vector control methods,
and in their economic evaluation.

Dengue is an acute systemic viral disease that has established itself
globally in both endemic and epidemic transmission cycles. Dengue
virus infection in humans is often inapparent1,6 but can lead to a wide
range of clinical manifestations, from mild fever to potentially fatal
dengue shock syndrome2. The lifelong immunity developed after infec-
tion with one of the four virus types is type-specific1, and progression to
more serious disease is frequently, but not exclusively, associated with
secondary infection by heterologous types2,5. No effective antiviral
agents yet exist to treat dengue infection and treatment therefore
remains supportive2. Furthermore, no licensed vaccine against dengue
infection is available, and the most advanced dengue vaccine candidate
did not meet expectations in a recent large trial7,8. Current efforts to
curb dengue transmission focus on the vector, using combinations of
chemical and biological targeting of Aedes mosquitoes and manage-
ment of breeding sites2. These control efforts have failed to stem the
increasing incidence of dengue fever epidemics and expansion of the

geographical range of endemic transmission9. Although the historical
expansion of this disease is well documented, the potentially large
burden of ill-health attributable to dengue across much of the tropical
and subtropical world remains poorly enumerated.

Knowledge of the geographical distribution and burden of dengue is
essential for understanding its contribution to global morbidity and
mortality burdens, in determining how to allocate optimally the limited
resources available for dengue control, and in evaluating the impact of
such activities internationally. Additionally, estimates of both apparent
and inapparent infection distributions form a key requirement for
assessing clinical surveillance and for scoping reliably future vaccine
demand and delivery strategies. Previous maps of dengue risk have
used various approaches combining historical occurrence records and
expert opinion to demarcate areas at endemic risk10–12. More sophis-
ticated risk-mapping techniques have also been implemented13,14, but
the empirical evidence base has since been improved, alongside
advances in disease modelling approaches. Furthermore, no studies
have used a continuous global risk map as the foundation for dengue
burden estimation.

The first global estimates of total dengue virus infections were based
on an assumed constant annual infection rate among a crude approxi-
mation of the population at risk (10% in 1 billion (ref. 5) or 4% in 2
billion (ref. 15)), yielding figures of 80–100 million infections per year
worldwide in 1988 (refs 5, 15). As more information was collated on the
ratio of dengue haemorrhagic fever to dengue fever cases, and the ratio
of deaths to dengue haemorrhagic fever cases, the global figure was
revised to 50–100 million infections16,17, although larger estimates of
100–200 million have also been made10 (Fig. 1). These estimates were
intended solely as approximations but, in the absence of better evidence,
the resulting figure of 50–100 million infections per year is widely cited
and currently used by the World Health Organization (WHO). As the
methods used were informal, these estimates were presented without
confidence intervals, and no attempt was made to assess geographical or
temporal variation in incidence or the inapparent infection reservoir.

Here we present the outcome of a new project to derive an evidence-
based map of dengue risk and estimates of apparent and inapparent
infections worldwide on the basis of the global population in 2010. We
compiled a database of 8,309 geo-located records of dengue occurrence
from a systematic search, resulting from 2,838 published literature
sources as well as newer online resources18 (see Supplementary Infor-
mation, section A; the full bibliography4 and occurrence data are avail-
able from authors on request). Using these occurrence records we:
chose a set of gridded environmental and socioeconomic covariates
known, or proposed, to affect dengue transmission (see Supplemen-
tary Information, section B); incorporated recent work assessing
the strength of evidence on national and subnational-level dengue
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present/absent status4 (Fig. 2a); and built a boosted regression tree
(BRT) statistical model of dengue risk that addressed the limitations
of previous risk maps (see Supplementary Information, section C) to
define the probability of occurrence of dengue infection (dengue risk)
within each 5 km 3 5 km pixel globally (Fig. 2b). The model was run
336 times to reflect parameter uncertainty and an ensemble mean map
was created (see Supplementary Information, section C). We then
combined this ensemble map with detailed longitudinal information
on dengue infection incidence from cohort studies and built a non-
parametric Bayesian hierarchical model to describe the relationship
between dengue risk and incidence (see Supplementary Information,
section D). Finally, we used the estimated relationship to predict the
number of apparent and inapparent dengue infections in 2010 (see
Supplementary Information, section E). Our definition of an apparent
infection is consistent with that used by the cohort studies: an infection
with sufficient severity to modify a person’s regular schedule, such as
attending school. This definition encompasses any level of severity of
the disease, including both clinical and subclinical manifestations.

We predict that dengue transmission is ubiquitous throughout the
tropics, with the highest risk zones in the Americas and Asia (Fig. 2b).
Validation statistics indicated high predictive performance of the BRT
ensemble mean map with area under the receiver operating character-
istic (AUC) of 0.81 (60.02 s.d., n 5 336) (see Supplementary Infor-
mation, section C). Predicted risk in Africa, although more unevenly
distributed than in other tropical endemic regions, is much more
widespread than suggested previously. Africa has the poorest record
of occurrence data and, as such, increased information from this con-
tinent would help to define better the spatial distribution of dengue
within it and to improve its derivative burden estimates. We found
high levels of precipitation and temperature suitability for dengue
transmission to be most strongly associated among the variables con-
sidered with elevated dengue risk, although low precipitation was not
found to limit transmission strongly (see Supplementary Information,
section C). Proximity to low-income urban and peri-urban centres was
also linked to greater risk, particularly in highly connected areas, indi-
cating that human movement between population centres is an import-
ant facilitator of dengue spread. These associations have previously

been cited9, but have not been demonstrated at the global scale and
highlight the importance of including socioeconomic covariates when
assessing dengue risk.

We estimate that there were 96 million apparent dengue infections
globally in 2010 (Table 1). Asia bore 70% (67 (47–94) million infec-
tions) of this burden, and is characterized by large swathes of densely
populated regions coinciding with very high suitability for disease
transmission. India19,20 alone contributed 34% (33 (24–44) million
infections) of the global total. The disproportionate infection burden
borne by Asian countries is emphasized in the cartogram shown in
Fig. 2c. The Americas contributed 14% (13 (9–18) million infections)
of apparent infections worldwide, of which over half occurred in Brazil
and Mexico. Our results indicate that Africa’s dengue burden is nearly
equivalent to that of the Americas (16 (11–22) million infections, or
16% of the global total), representing a significantly larger burden than
previously estimated. This disparity supports the notion of a largely
hidden African dengue burden, being masked by symptomatically simi-
lar illnesses, under-reporting and highly variable treatment-seeking
behaviour6,9,20. The countries of Oceania contributed less than 0.2%
of global apparent infections.

We estimate that an additional 294 (217–392) million inapparent
infections occurred worldwide in 2010. These mild ambulatory or
asymptomatic infections are not detected by the public health surveil-
lance system and have no immediate implications for clinical manage-
ment. However, the presence of this huge potential reservoir of
infection has profound implications for: (1) correctly enumerating eco-
nomic impact (for example, how many vaccinations are needed to avert
an apparent infection) and triangulating with independent assessments
of disability adjusted life years (DALYs)21; (2) elucidating the popu-
lation dynamics of dengue viruses22; and (3) making hypotheses about
population effects of future vaccine programmes23 (volume, targeting
efficacy, impacts in combination with vector control), which will need
to be administered to maximize cross-protection and minimize post-
vaccination susceptibility.

The absolute uncertainties in the national burden estimates are
inevitably a function of population size, with the greatest uncertainties
in India, Indonesia, Brazil and China (see full rankings in Sup-
plementary Table 4). In addition, comparing the ratio of the mean
to the width of the confidence interval24 revealed the greatest contri-
butors to relative uncertainty (see full rankings in Supplementary
Table 4). These were countries with sparse occurrence points and
low evidence consensus on dengue presence, such as Afghanistan or
Rwanda (see Fig. 2a), or those with ubiquitous high risk, such as
Singapore or Djibouti, for which our burden prediction confidence
interval is at its widest (see Supplementary Information, section D,
Fig. 2). Therefore, increasing evidence consensus and occurrence data
availability in low consensus countries and assembling new cohort
studies, particularly in areas of high transmission, will reduce uncer-
tainty in future burden estimates. Our approach, uniquely, provides
new evidence to help maximize the value and cost-effectiveness of
surveillance efforts, by indicating where limited resources can be tar-
geted to have their maximum possible impact in improving our know-
ledge of the global burden and distribution of dengue.

Our estimates of total infection burden (apparent and inapparent)
are more than three times higher than the WHO predicted figure
(Supplementary Information, section E). Our definition of an apparent
infection is broad, encompassing any disruption to the daily routine of
the infected individual, and consequently is an inclusive measurement
of the total population affected adversely by the disease. Within this
broad class, the severity of symptoms will affect treatment-seeking
behaviours and the probability of a correct diagnosis in response to
a given infection. Our definition is therefore more comprehensive than
those of traditional surveillance systems which, even in the most effi-
cient system, report a much narrower range of dengue infections. By
reviewing our database of longitudinal cohort studies, in which total
infections in the community were documented exhaustively, we find
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Figure 1 | Global estimates of total dengue infections. Comparison of
previous estimates of total global dengue infections in individuals of all ages,
1985–2010. Black triangle, ref. 5; dark blue triangle, ref. 15; green triangle, ref.
17; orange triangle, ref. 16; light blue triangle, ref. 30; pink triangle, ref. 10; red
triangle, apparent infections from this study. Estimates are aligned to the year of
estimate and, if not stated, aligned to the publication date. Red shading marks the
credible interval of our current estimate, for comparison. Error bars from ref. 10
and ref. 16 replicated the confidence intervals provided in these publications.
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Global Distribution of Dengue 

•  Probability of dengue occurrence at the 5km x 5km scale 
 

  based on map-based statistical approach 
 
 
 
 
 
 
 
 
 
 
 
 
•  South East Asia, India, South America 
•  Likely underappreciated in Africa 
•  Note US/Mexico border 
 



US/Mexico Border 

•  Gubler 1998: 
 
 
 
 
 
 
 
 
 
 
 
 
 
•  Aedes aegypti doesn’t know about the border, but dengue does? 

 

 

 
 
 
 
 
 

of imported dengue were reported to CDC (21, 40, 119). Al-
though adequate blood samples were received from only some
of these patients, 584 (22%) were confirmed in the laboratory
as dengue.

These cases represent only the tip of the iceberg, because
most physicians in the United States have a low index of sus-
picion for dengue, which is often not included in the differen-
tial diagnosis of acute febrile illness, even if the patient re-
cently returned from a tropical country. As a result, the
majority of imported dengue cases are never reported (21). It
is important to increase awareness of dengue and DHF among
physicians in temperate areas, however, because the disease
can be life-threatening. For example, two cases of dengue
shock syndrome (DSS) were recently described in Swedish
tourists returning from holiday in Asia (152). In the United
States, imported cases appear to be increasingly severe (21).
From 1986 to 1993, for example, only 13 of 166 patients (8%)
with laboratory-confirmed dengue were hospitalized. In 1994
and 1995, however, 6 of 46 patients (13%) and 11 of 86 patients
(13%) with confirmed imported disease required hospitaliza-
tion, respectively. Moreover, 3 (7%) of the patients in 1994 had
severe, hemorrhagic disease (21). Therefore, it is important
that physicians in the United States consider dengue in the
differential diagnosis of a viral syndrome in all patients with a
travel history to any tropical area.

The potential for epidemic dengue transmission in the
United States still exists. After an absence of 35 years, auto-
chthonous transmission, secondary to importation of the virus
in humans, occurred on four occasions in the past 17 years
(1980, 1986, 1995, and 1997) (21, 22). Although all of these
outbreaks were small, they underscore the potential for dengue
transmission in the United States, where two competent mos-
quito vectors are found (48) (Fig. 4). A. aegypti, the most im-

portant and efficient epidemic vector of dengue viruses, has
been in the United States for over 200 years and was respon-
sible for transmitting major epidemics in the southern states in
the 19th and early 20th centuries (34). Currently, this species is
found only in the Gulf Coast states from Texas to Florida,
although small foci have recently been reported in Arizona
(Fig. 4). Aedes albopictus, a secondary vector of dengue virus,
was introduced into the continental United States from Asia in
the early 1980s and has since become widespread in the eastern
half of the country. This species currently is found in 866
counties in 26 of the continental states (22, 105); it has also
been found in Hawaii for over 90 years, as well as in Guam and
Saipan. Both A. aegypti and A. albopictus can transmit dengue
viruses to humans, and their presence in the United States
increases the risk of autochthonous dengue transmission, sec-
ondary to imported cases (37, 40).

NATURAL HISTORY

The Viruses

There are four dengue virus serotypes, called DEN-1, DEN-
2, DEN-3, and DEN-4. They belong to the genus Flavivirus,
family Flaviviridae (of which yellow fever virus is the type
species), which contains approximately 70 viruses (150). The
flaviviruses are relatively small (40–50 mm) and spherical with
a lipid envelope. The flavivirus genome is approximately 11,000
bases long and is made up of three structural and seven non-
structural proteins. There are three major complexes within
this family—tick-borne encephalitis virus, Japanese encephali-
tis virus, and dengue virus. All flaviviruses have common group
epitopes on the envelope protein that result in extensive cross-
reactions in serologic tests. These make unequivocal serologic

FIG. 3. World distribution map of dengue and A. aegypti in 1998.
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Expansion of Dengue 

•  Viewed as an emerging infectious disease 

•  Demographic and social changes, particularly population growth and urbanization 
•  Lack of effective mosquito control 

 Reinvasion of Ae. aegypti in South America 
•  Expansion of the range of Ae. aegypti mosquito 

 increased number of larval habitats in tropical regions (plastic containers and 
  tyres) 

•  Increased international trade and travel: dispersal of mosquito and virus 

•  Potential for climate change to make things worse? 



Temporal Patterns of Incidence 

•  Repeated epidemics : annual or multi-annual period 
 

  Incidence of dengue disease in Thailand, 1981-2005 
    (Cummings et al. PLoS Medicine, 2009)    

 
 
•  Oscillatory behavior driven by human immunity: 

 explosive epidemic  
 susceptible population depleted : self-limiting epidemic 
 susceptibles replenished by births (slower process) 
  importance of demographic processes (birth rate) 
  

estimated decrease of 1.561023 (95% CI 8.761024, 2.261023) per
year increase in the median age of provincial population. Mean
provincial force of infection was significantly associated with mean
household size, birth rate, proportion of the population under 15 y of
age, percent of homes with sanitation, latitude, and average monthly
rainfall (Table 1). Median age and mean force of infection remain
significantly associated in a multivariate model including all other
statistically significant covariates.

The change in force of infection was significantly associated
with the changes in two covariates, median age and the percentage
of homes constructed with permanent materials (see Table 2). In
univariate analysis, each year increase in the median age of the
population was associated with a 24.6e22 change in l tð Þ (95%
CI 27.7e22 to 21.5e22) and a percentage increase in homes
built with permanent materials was associated with a 21.5e22
change in l tð Þ (95% CI 22.6e22 to 23.6e23).

Only median age was found to be a statistically significant
predictor of both the mean force of infection and the change in the
force of infection in each province between 1985 and 2005.

Changes in Incidence
Between 1985 and 2005, there was a small but statistically

significant decline in the national incidence of DHF (Figure 4A). The
majority of individual provinces have also shown significant declines,

but these declines are not significantly associated with changes in
force of infection (Figure 4B). Considering a broader interval (1980–
2005), the reduction in annual incidence is not significant.

Changes in Periodicity
Figure 5 shows the period of multiannual oscillations (recon-

structed from a continuous wavelet transform using a period band

Table 1. Results of univariate linear regression of force of
infection estimated using model 4 on demographic,
socioeconomic, and climatic characteristics of provinces.

Independent Variable Regression coefficients (95% CI)

Median age 21.5e23 (22.2e23 to 28.7e24)

Mean household size 9.7e23 (4.8e23 to 1.5e22)

Birth rate (per 1,000) 4.2e24 (8.3e26 to 8.3e24)

Proportion of population under 15 y of age 6.8e22 (3.7e22 to 1.0e21)

Percent of homes with sanitation 22.1e24 (-3.3e24 to 28.3e25)

Average rainfall (mm/mo) 4.2e25 (3.1e26 to 8.1e25)

Latitude (degrees) 21.3e23 (-1.6e23 to 28.1e24)

School attendance, percent of homes constructed with permanent materials,
percent of provincial population in urban areas, gross provincial product (Baht
per capita), and average temperature were not statistically significantly
associated with the mean force of infection. Covariates significant in multiple
linear regression: median age 23.2e23 (95% CI 25.9e23 to 25.1e24), latitude
21.1e28 (95% CI 22.0e28 to 21.4e29), and birth rate 21.4e23 (95% CI
22.3e23 to 24.1e24).
doi:10.1371/journal.pmed.1000139.t001

Table 2. Results of univariate linear regression of change in
the force of infection from 1985 to 2005 estimated using
model 4 on demographic, socioeconomic, and climatic
characteristics of provinces.

Independent Variable Regression Coefficients (95% CI)

Change in median age 24.6e22 (27.7e22, 21.5e22)

Change in percentage of homes
constructed with permanent materials

21.5e22 (22.6e22, 23.6e23)

Change in school attendance, household size, percent of provincial population in
urban areas, birth rate, gross provincial product, average rainfall, and average
temperature were not statistically significantly associated with the change in the
mean force of infection. Both median age and change in percentage of homes
constructed with permanent materials significant in model that includes both.
doi:10.1371/journal.pmed.1000139.t002

Figure 4. Incidence of dengue disease in Thailand, 1981–2005.
(A) Incidence of dengue disease in Thailand, 1981–2005. The solid line
shows the incidence per 1,000 individuals per year of DHF and DSS
together, whereas the grey line shows the incidence of DHF, DSS, and
DF. DF was included in case reports starting in 1993. (B) Change in
incidence (per 1,000 per year) 1985–2005 with 95% CI versus change in
force of infection for each of the provinces of Thailand. A linear
association between these two variables is not statistically significant.
doi:10.1371/journal.pmed.1000139.g004

Figure 5. Period of multiannual oscillations of DHF incidence in
each of the 72 provinces of Thailand. Each line is the period in months
of the incidence in one province. Period presented is the mean period of
power in a period band of 18 to 60 mo reconstructed using the continuous
wavelet transform (see Text S1, Detailed Methods). The thick line shows the
period of multiannual oscillations of country-wide incidence.
doi:10.1371/journal.pmed.1000139.g005
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Temporal Patterns of Incidence 

•  Serotype-specific immunity leads to temporal patterns in serotype-specific 
 incidence    

 
 
 

spond to phase differences of Fig. 5!b", and the black bars
correspond to the data from Fig. 5!a". Notice that when com-
paring primary infections of serotype 1 to secondary infec-
tions that currently have serotype 1, there is a strong phase
locking component on average.

IV. CONCLUSIONS

We have derived and analyzed the dynamics of a model
for multistrain diseases with antibody-dependent enhance-
ment. The model for secondary infections, which includes
ADE as a parameter, adds a new wrinkle to models of the
SIR type. In previous studies of single strain models that do
not include environmental forcing, the endemic equilibrium
is the only possible stable state. That is, there are no bifur-
cations which give rise to dynamics exhibiting regular or
irregular outbreaks. In contrast, by modeling the effect of
ADE as an increase in infectivity of secondary infections, we
see both analytically and numerically that periodic outbreaks
appear at a critical ADE value. Moreover, the analysis re-
veals exactly how the period of oscillations depends on the
ADE parameter near the bifurcation point. The range of pe-
riods predicted for the parameters used in our computations
appears to agree well with those observed in the data in Fig.
7 in the Appendix.

When the ADE factor increases above a threshold, the
system’s behavior is chaotic, and outbreaks of different
strains occur asynchronously. This observation corresponds
qualitatively with epidemiological data on asynchronous out-
breaks of dengue fever !see Appendix". Seasonal forcing,
thought to be a primary driver for the observed oscillations
in the different strains, is typically believed to disrupt any
out-of-phase behavior in the dynamics and force the entire
system to lock on the period of the forcing. However, in our
preliminary study, we find that this is not the case. Phase
desynchronization between serotypes occurs even in the

seasonally forced case.
However, there exists a specific relationship between the

primary and secondary infections. Specifically, we have ob-
served that although the different serotypes desynchronize
when the solutions are chaotic, there is surprising structure in
the peak outbreaks of the serotypes when comparing the ap-
propriate secondary infectives to the appropriate primary in-
fectives. Although there is no vaccine currently available for
all serotypes, the results here point to potential new methods
of analysis and monitoring of multistrain diseases. In the
field, the majority of the cases reported are secondary infec-
tions. Therefore, by observing a small percentage of the in-
cidence in the secondary infections of one serotype, synchro-
nization would imply that the data is representative of the
general behavior of all the groups infected with that sero-
type, including those with only a primary infection. Further
global analysis techniques based on center manifold methods
can be used to explain the synchronization of particular pri-
mary and secondary infectives when the time series becomes
chaotic; this approach is the subject of further study.
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APPENDIX: EPIDEMIOLOGICAL DATA

Figure 7, reprinted from #16$, shows the frequency of

FIG. 7. !Color online" Frequency of detection of each of the four Dengue virus types per month at the Queen Sirikit National Institute
for Child Health from 1973 to 1999. Reprinted from #16$.
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Inferring the Rate and Time-Scale of Dengue Virus Evolution

S. Susanna Twiddy, Edward C. Holmes, and Andrew Rambaut
Department of Zoology, University of Oxford, Oxford, United Kingdom

Dengue is often referred to as an emerging disease because of the rapid increases in incidence and prevalence that have
been observed in recent decades. To understand the rate at which genetic diversification occurs in dengue virus and to
infer the time-scale of its evolution, we employed a maximum likelihood method that uses information about times of
virus sampling to estimate the rate of molecular evolution in a large number of viral envelope (E) gene sequences and to
place bounds around the dates of appearance of all serotypes and specific genotypes. Our analysis reveals that dengue
virus generally evolves according to a molecular clock, although some serotype-specific and genotype-specific rate
differences were observed, and that its origin is more recent than previously suggested, with the virus appearing
approximately 1000 years ago. Furthermore, we estimate that the zoonotic transfer of dengue from sylvatic (monkey) to
sustained human transmission occurred between 125 and 320 years ago, that the current global genetic diversity in the
four serotypes of dengue virus only appeared during the past century, and that the recent rise in genetic diversity can be
loosely correlated both to human activities such as population growth, urbanization, and mass transport and to the
emergence of dengue hemorrhagic fever as a major disease problem.

Introduction

Dengue is the most common vector-borne viral
disease of humans, infecting in excess of 50 million
people in tropical and subtropical regions each year
(World Health Organization, 1999). Where infection
results in overt disease, the most common form is an
acute febrile disease similar to influenza (classical dengue
fever [DF]). However, in a minority of cases, this disease
progresses to spontaneous hemorrhaging (dengue hemor-
rhagic fever [DHF]) and, most seriously, to dengue shock
syndrome (DSS), characterized by a lack of detectable
blood pressure and/or pulse. Case-fatality rates for the
latter syndromes can be as high as 5% (World Health
Organization, 2001).

The agent of these diseases, dengue virus, is an RNA
virus with a positive-sense genome of approximately 11
kb, belonging to the genus Flavivirus and existing as four
genetically distinct serotypes (DEN-1 to DEN-4). There
are two distinct transmission cycles for dengue. The first
generally involves transmission to human hosts in urban
areas by the ‘‘domesticated’’ mosquito, Aedes aegypti,
while the second, the sylvatic, or jungle, transmission
cycle involves nonhuman primates as the major vertebrate
hosts (although humans living or working in the forest or
its fringes are occasionally infected), with the main vectors
being canopy-dwelling Aedes mosquitoes (Rudnick 1986).

The prevalence of all four dengue serotypes has risen
dramatically in recent years, accompanied by an increase
in genetic diversity within each serotype. This diversity
was previously demonstrated in an analysis of the
branching structure of dengue phylogenies, which revealed
a simultaneous increase in the number of viral lineages in
all serotypes over the past 200 years (Zanotto et al. 1996).
Clearly, such a rise in genetic diversity may also have
important phenotypic implications, such as the emergence
of viruses with altered antigenicity, virulence, or tissue
tropism. Therefore, information about the rates of

nucleotide substitution in dengue virus not only provides
information about its epidemiological history but also is
crucial to our understanding of the processes controlling
viral evolution and, consequently, to predicting responses
to drug treatments or vaccination programs (Holmes and
Burch 2000).

Previous studies of the rate and time frame of dengue
evolution have employed several different methods.
Zanotto et al. (1996) compared phylogenetically indepen-
dent pairs of dated sequences with an outgroup sequence,
determining the rate for each pair of sequences by dividing
the divergence that has occurred between their sampling
by the difference in isolation times. In this manner, a rate
estimate for nonsynonymous substitutions in the dengue
envelope (E) gene of mosquito-borne flaviviruses (most of
which were dengue) of 7.5 3 1025 subs/site/year was
obtained. With this rate in hand, the origin of the four
serotypes was placed at around 1500 to 2000 years ago,
with the rapid increase in genetic diversity taking place
within the past 200 years, coincident with the increased
size and mobility of the human host population over this
period. Lanciotti, Gubler, and Trent (1997) employed
linear regression to a scatter plot of genetic distance from
tree root to tip against date of isolation to estimate an
overall substitution rate (i.e., combining both synonymous
and nonsynonymous rates) in the E gene of DEN-4
of 8.3 3 1024 subs/site/year. More recently, Wang et al.
(2000) used both these methods to estimate substitution
rates in DEN-2, producing an overall rate estimate of
approximately 6 3 1024 subs/site/year. This rate was ex-
trapolated to serotypes 1 and 4, placing the divergence
between sylvatic and human strains of DEN-1 at 200 6
100 years before the present, with those of DEN-2 and
DEN-4 at 1000 6 500 years ago and 600 6 300 years
ago, respectively.

However, none of these methods can be considered
statistically rigorous. For pairwise comparison methods,
the number of suitable pairs of sequences in any data set is
usually limited. Furthermore, due to the stochastic nature
of the substitution process, sequences sampled earlier may
exhibit more divergence from the outgroup than those
sampled later, resulting in a negative rate estimate (Suzuki
et al. 1999). Such cases cannot be easily included in the

Key words: dengue virus, substitution rate, divergence time, maxi-
mum likelihood, E gene.
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Inferring the Rate and Time-Scale of Dengue Virus Evolution

S. Susanna Twiddy, Edward C. Holmes, and Andrew Rambaut
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Dengue is often referred to as an emerging disease because of the rapid increases in incidence and prevalence that have
been observed in recent decades. To understand the rate at which genetic diversification occurs in dengue virus and to
infer the time-scale of its evolution, we employed a maximum likelihood method that uses information about times of
virus sampling to estimate the rate of molecular evolution in a large number of viral envelope (E) gene sequences and to
place bounds around the dates of appearance of all serotypes and specific genotypes. Our analysis reveals that dengue
virus generally evolves according to a molecular clock, although some serotype-specific and genotype-specific rate
differences were observed, and that its origin is more recent than previously suggested, with the virus appearing
approximately 1000 years ago. Furthermore, we estimate that the zoonotic transfer of dengue from sylvatic (monkey) to
sustained human transmission occurred between 125 and 320 years ago, that the current global genetic diversity in the
four serotypes of dengue virus only appeared during the past century, and that the recent rise in genetic diversity can be
loosely correlated both to human activities such as population growth, urbanization, and mass transport and to the
emergence of dengue hemorrhagic fever as a major disease problem.

Introduction

Dengue is the most common vector-borne viral
disease of humans, infecting in excess of 50 million
people in tropical and subtropical regions each year
(World Health Organization, 1999). Where infection
results in overt disease, the most common form is an
acute febrile disease similar to influenza (classical dengue
fever [DF]). However, in a minority of cases, this disease
progresses to spontaneous hemorrhaging (dengue hemor-
rhagic fever [DHF]) and, most seriously, to dengue shock
syndrome (DSS), characterized by a lack of detectable
blood pressure and/or pulse. Case-fatality rates for the
latter syndromes can be as high as 5% (World Health
Organization, 2001).

The agent of these diseases, dengue virus, is an RNA
virus with a positive-sense genome of approximately 11
kb, belonging to the genus Flavivirus and existing as four
genetically distinct serotypes (DEN-1 to DEN-4). There
are two distinct transmission cycles for dengue. The first
generally involves transmission to human hosts in urban
areas by the ‘‘domesticated’’ mosquito, Aedes aegypti,
while the second, the sylvatic, or jungle, transmission
cycle involves nonhuman primates as the major vertebrate
hosts (although humans living or working in the forest or
its fringes are occasionally infected), with the main vectors
being canopy-dwelling Aedes mosquitoes (Rudnick 1986).

The prevalence of all four dengue serotypes has risen
dramatically in recent years, accompanied by an increase
in genetic diversity within each serotype. This diversity
was previously demonstrated in an analysis of the
branching structure of dengue phylogenies, which revealed
a simultaneous increase in the number of viral lineages in
all serotypes over the past 200 years (Zanotto et al. 1996).
Clearly, such a rise in genetic diversity may also have
important phenotypic implications, such as the emergence
of viruses with altered antigenicity, virulence, or tissue
tropism. Therefore, information about the rates of

nucleotide substitution in dengue virus not only provides
information about its epidemiological history but also is
crucial to our understanding of the processes controlling
viral evolution and, consequently, to predicting responses
to drug treatments or vaccination programs (Holmes and
Burch 2000).

Previous studies of the rate and time frame of dengue
evolution have employed several different methods.
Zanotto et al. (1996) compared phylogenetically indepen-
dent pairs of dated sequences with an outgroup sequence,
determining the rate for each pair of sequences by dividing
the divergence that has occurred between their sampling
by the difference in isolation times. In this manner, a rate
estimate for nonsynonymous substitutions in the dengue
envelope (E) gene of mosquito-borne flaviviruses (most of
which were dengue) of 7.5 3 1025 subs/site/year was
obtained. With this rate in hand, the origin of the four
serotypes was placed at around 1500 to 2000 years ago,
with the rapid increase in genetic diversity taking place
within the past 200 years, coincident with the increased
size and mobility of the human host population over this
period. Lanciotti, Gubler, and Trent (1997) employed
linear regression to a scatter plot of genetic distance from
tree root to tip against date of isolation to estimate an
overall substitution rate (i.e., combining both synonymous
and nonsynonymous rates) in the E gene of DEN-4
of 8.3 3 1024 subs/site/year. More recently, Wang et al.
(2000) used both these methods to estimate substitution
rates in DEN-2, producing an overall rate estimate of
approximately 6 3 1024 subs/site/year. This rate was ex-
trapolated to serotypes 1 and 4, placing the divergence
between sylvatic and human strains of DEN-1 at 200 6
100 years before the present, with those of DEN-2 and
DEN-4 at 1000 6 500 years ago and 600 6 300 years
ago, respectively.

However, none of these methods can be considered
statistically rigorous. For pairwise comparison methods,
the number of suitable pairs of sequences in any data set is
usually limited. Furthermore, due to the stochastic nature
of the substitution process, sequences sampled earlier may
exhibit more divergence from the outgroup than those
sampled later, resulting in a negative rate estimate (Suzuki
et al. 1999). Such cases cannot be easily included in the
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Molecular Epidemiology: Phylogeny of DENV-3 

a rare event. This could result from a limited gene flow among
distantly geographic regions. However, genotype differences were
observed even between neighboring countries like Indonesia and
Thailand, where DENV-3 epidemics have been consistently
dominated by GI and GII, respectively, since the 1970s. Notwith-
standing, there is evidence of incursions into Indonesia by ‘‘Thai-
like’’ GII strains in 1988 (represented by strain DQ675520)
(Raekiansyah et al., 2005), as well as into Thailand by ‘‘Indone-
sian-like’’ GI strains in 1998 (represented by strain AY145714)
(Wittke et al., 2002). Nevertheless, these incursions seem to have
failed to become established, since none of the later Indonesian
and Thai isolates grouped within GII and GI, respectively. These
facts suggested that several factors, other than geographic
proximity, could have had a significant impact on the observed
spatial dispersion patterns of DENV-3.

It is hard to envisage a general vicariance mechanism that
would explain a lack of genotype overlapping at the same
geographic locality. Possibly competition among genotypes, and/
or regional differences in mosquito vector competence for each
genotype (Anderson and Rico-Hesse, 2006; Armstrong and Rico-
Hesse, 2001; Cologna et al., 2005) may be involved. Another
possible explanation for the observed patterns could involve viral
neutralization by cross-immunity among closely related strains
caused by a pre-exposed human population. This would allow for
distinct serotype co-circulation but make it difficult for intra-
serotype (i.e., genotype) co-circulation, due to a reduction in
numbers of the available susceptible human hosts to levels below
that necessary to sustain significant epidemics (Adams et al.,
2006). This would help explain why the evolution of DENV-3 is
characterized by phylogenetic trees with a strong temporal

Table 2
Bayes factors between different molecular clock models for DENV-3.

Dataset Model comparison log BFa Evidence against H0
b

DENV-3 Strict (H0) vs. relaxed (H1) clock 22.8 (0.4) Decisive
GI Strict (H0) vs. relaxed (H1) clock !0.8 (0.4) Negative
GII Strict (H0) vs. relaxed (H1) clock 5.0 (0.5) Decisive
GIII Strict (H0) vs. relaxed (H1) clock 10.8 (0.5) Decisive
GI-ID Strict (H0) vs. relaxed (H1) clock !0.4 (0.3) Negative
GII-TH Strict (H0) vs. relaxed (H1) clock 1.6 (0.4) Weak
GIII-AM Strict (H0) vs. relaxed (H1) clock 12.8 (0.4) Decisive

a log BF (Bayes factor) is the difference (in natural log units) of the marginal likelihood of null (H0) and alternative (H1) model. The standard error of the estimates is given in
parenthesis.

b Evidence against H0 is assessed in the following way: ln BF<0 indicates no evidence against the null model; ln BF between 0 and 2.3 indicates weak evidence against the
null model, ln BF between 2.3 and 3.4 indicates strong evidence against the null model; ln BF between 3.4 and 4.6 indicates very strong evidence against the null model; ln BF
>4.6 indicates decisive evidence against the null model.

Fig. 2. (Continued ).
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Molecular Epidemiology: Phylogeny of DENV 

•  Inferences from phylogenetic analysis of molecular epidemiology data: 

•  DENV entered human population between 125 and 320 years ago 
•  Increase in genetic diversity occurred relatively recently in this history 

•  Origin of DENV-3 in human about 1890 
 
•  Diversity of main DENV-3 genotypes occurred between mid sixties and mid 

seventies 

 
 
 



Inferred Migration Patterns 

lineage-specific rate differences among DENV-2, DENV-3, and
DENV-4. Whether lineage-specific rate differences in DENV
evolution previously described (Twiddy et al., 2003) really exist,
or simply reflects a previous use of much smaller datasets needs
further investigation.

We estimated the Tmrca of DENV-3 at around 1890, fully
consistent with previous estimation (Tmrca ! 1900) (Twiddy et al.,
2003). Our analysis also suggested that the current global genetic
diversity of genotypes I, II, and III arose almost simultaneously
within a short time period between the middle 1960s and the
middle 1970s, coinciding with the description of the first cases of
DHF by DENV-3 in Asia (Gubler et al., 1979; Nisalak et al., 2003;
Sumarmo, 1987; Wallace et al., 1980) and the rapid increase in
human population size, urbanization, and human movement.
According with our estimations, GIII strains were probably
introduced into Latin America around 1991, few years earlier
than the initial detection of this genotype in the continent in 1994
(CDC, 1995; Guzman et al., 1996). Similar time intervals of few
years between the estimated introduction and initial detection
were also described for DENV-2 and DENV-4 in the Americas
(Carrington et al., 2005).

In conclusion, this study proposes that global DENV-3 evolution
could be well characterized as a collection of discrete, country-
specific viral population bursts, with limited co-circulation of
distinct genotypes in a single region. Despite this strong spatial
subdivision, DENV-3 strains of distinct genotypes and from
different localities have been evolving at roughly the same rate
over time. Whether such similar evolutionary rate estimates
translate into comparable biological properties (such as transmis-
sibility, infectiousness, and/or virulence) across distinct DENV-3
lineages is still unclear. Our data also suggested that the current
diversity of the three main DENV-3 genotypes arose within the last
30–40 years, coinciding with the emergence of large-scale DHF/
DSS epidemics in Asia.
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lineage-specific rate differences among DENV-2, DENV-3, and
DENV-4. Whether lineage-specific rate differences in DENV
evolution previously described (Twiddy et al., 2003) really exist,
or simply reflects a previous use of much smaller datasets needs
further investigation.

We estimated the Tmrca of DENV-3 at around 1890, fully
consistent with previous estimation (Tmrca ! 1900) (Twiddy et al.,
2003). Our analysis also suggested that the current global genetic
diversity of genotypes I, II, and III arose almost simultaneously
within a short time period between the middle 1960s and the
middle 1970s, coinciding with the description of the first cases of
DHF by DENV-3 in Asia (Gubler et al., 1979; Nisalak et al., 2003;
Sumarmo, 1987; Wallace et al., 1980) and the rapid increase in
human population size, urbanization, and human movement.
According with our estimations, GIII strains were probably
introduced into Latin America around 1991, few years earlier
than the initial detection of this genotype in the continent in 1994
(CDC, 1995; Guzman et al., 1996). Similar time intervals of few
years between the estimated introduction and initial detection
were also described for DENV-2 and DENV-4 in the Americas
(Carrington et al., 2005).

In conclusion, this study proposes that global DENV-3 evolution
could be well characterized as a collection of discrete, country-
specific viral population bursts, with limited co-circulation of
distinct genotypes in a single region. Despite this strong spatial
subdivision, DENV-3 strains of distinct genotypes and from
different localities have been evolving at roughly the same rate
over time. Whether such similar evolutionary rate estimates
translate into comparable biological properties (such as transmis-
sibility, infectiousness, and/or virulence) across distinct DENV-3
lineages is still unclear. Our data also suggested that the current
diversity of the three main DENV-3 genotypes arose within the last
30–40 years, coinciding with the emergence of large-scale DHF/
DSS epidemics in Asia.
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PART II : Understanding Transmission   

  Dynamics 



 
Tools of mathematical modeling have been used to  

 
 interpret observed dynamical patterns  

 
and  
 

 inform our understanding of transmission processes 

Mathematical Modeling 



Dengue Lifecycle 

1.  Adult female mosquito bites infected person 
 

2.  Incubation of virus within mosquito 
extrinsic incubation period ~ 7-14 days 

 (temperature dependent) 
 

3.  Infectious mosquito bites susceptible person 
 

4.  Virus incubates within person 
average intrinsic incubation period ~ 4-5 days 
average human infectious period ~ 4-5 days 
 
(cycle repeats) 
 

Key fact 1 :  Adult female mosquitoes need blood to produce eggs  
 
(Rudyard Kipling: The female of the species is more deadly than the male) 

 

Key fact 2 :  Adult female mosquitoes live for about 3 weeks (highly dependent on conditions) 
 

Key fact 3 :  Lifecycle involves the mosquito biting twice at appropriate times 



History: The Ross Model 

•  Developed for malaria, but widely used for other 
vector-borne infections 
 

•  Very simple model (just two equations) 
 

•  Asymmetry in the transmission term:  
 

the rate at which mosquitoes bite humans is 
proportional to the number of mosquitoes but 
independent of the number of people 
 

(idea is that mosquitoes only need a certain number of blood meals, 
so as long as there are sufficiently many humans around…) 

•  Very simple behavior: infection can invade and persist if the basic reproductive 
number (R0) is greater than one 
 

•  Basic reproductive number is the average number of secondary infections that 
result if a single infectious individual is introduced into an entirely susceptible 
population 



The Ross Model 
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•  Assume constant host (human) population size 
 

H  humans, of which Y  are infectious 
 

H - Y  susceptible humans 
 
Humans recover to susceptible state  
(“SIS” infection in humans) 

•  Assume constant vector (mosquito) population 
 

V mosquitoes, of which I are infectious 
 

V - I   susceptible mosquitoes 
 
Infected mosquitoes never recover (“SI”), but 
when they die, they are replaced by a 
susceptible mosquito 
 
(no need to worry about susceptible deaths)	



The Ross Model 
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•  Each vector bites at rate k  
 
Probability p of transmission per bite when  
infectious vector bites susceptible host 
 

 Define α = k p 
 
Probability q of transmission per bite when 
susceptible vector bites infectious host 
 

 Define β = k q 
 

•  Total biting rate is k V     
linear in V , but independent of H 

•  Key assumption: rate at which mosquitoes bite humans is proportional to the 
number of mosquitoes but independent of the number of humans 
 
Mosquitoes have a certain appetite for blood, and there are sufficiently many 
humans around to satisfy this 



The Ross Model 
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•  Key assumption about biting rate leads to transmission terms that are: 
  proportional to numbers of mosquitoes, fractions of human population 

 
•  Assume constant recovery rate, ξ , for an infectious human 
•  Constant death rate, δ , for a vector 

	
	

Infectious humans 
 

	

Infectious mosquitoes 
 



Basic Reproductive Number 

When infection is rare, rates of transmission per infected individual are approximately 
	α 	   mosquito to human 
	βV/H 	   human to mosquito 

	
One infected mosquito causes an average of α/δ new human infections     R0

VH 
 

One infected human causes an average of βV/(ξH) new mosquito infections  R0
HV 

 

For entire lifecycle: 

 
 

In the deterministic model, R0>1 guarantees invasion (and persistence) of infection 
 
success of invasion does not depend on whether an infectious host or vector arrives 
  

  

Infectious humans	

Infectious mosquitoes	

1/ξ   average duration of infection  
1/δ   average lifespan of infected mosquito 

α     transmission parameter mosquito to    
human (biting rate × transmission prob.) 

β  transmission parameter human to mosquito 
(biting rate × transmission prob.) 

 



The Basic Reproductive Number 

€ 

R0 = ma2bcDHDM P

The average number of secondary infections when infection is introduced into an 
entirely susceptible population is the product of: 
 

•  the number of mosquitoes per person ( m ) 
 

•  the square of the rate at which a single mosquito bites ( a ) 
 

•  transmission probabilities between host and vector ( b,c )  
 

•  average duration of infection in humans ( DH ) 
 

•  average lifespan of infected mosquito ( DM ) 
 

•  probability that mosquito survives the extrinsic incubation period ( P ) 

 
 



The Basic Reproductive Number 

€ 

R0 = ma2bcDHDM P

Herd immunity: controlling spread of infection requires reduction of R0 below 
one 

 
 e.g. by : 

 reducing number of vectors 
 reducing encounters between humans and vectors 
 reducing duration of infection 
 reducing number of susceptible humans 
  … 

 

Need to better understand encounters between humans and vectors  
 
 



Traditional Control of Mosquito-Borne Infections 

•  Modify environment 
  

 
 

•  Insecticides 
 Spraying (vector population suppression) 

 
 Insecticide-laced bed nets 
  Ineffective against mosquitoes that 
  mainly bite during the day (e.g. Ae. aegypti) 

 
 Insecticide resistance, safety, off-target killing, difficult to maintain 

 
•  Drug treatment 

  Not always available  
    Major problems with drug resistance  
  Side effects 

 
 

•  Vaccines 
  Antigenically diverse pathogens  
   dengue: four serotypes, ‘immune enhancement’ 
   vaccine that is not protective against all four 
   serotypes could lead to more cases of DHF  

Image credits: C. Curtis, Tjeerd 
Wiersma, J. Davis, epocrates.com   



Dengue Vaccine 

•  Sanofi-Pasteur vaccine 

•  Somewhat mixed results in clinical trials 

•  Differential effectiveness against different serotypes, with noticeably lower 
protection against DENV-2 

•  30.2% effective in a phase IIb trial in Thailand, due to prevalence of DENV-2 

•  56% effective in phase III trial in Asia (only 34.7% effective against DENV-2) 
•  60.8% effective in a South American phase II trial 

 

•  Reduced number of severe dengue cases by 80% 

•  Less effective for individuals without prior exposure to dengue  
  (e.g. tourists!) 



A Cautionary Note 

 
 
•  Complicated relationship between infection, disease and cross-immunity 

between serotypes can lead to counterintuitive impacts of control 

Decreases in dengue transmission may act to increase
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Dengue hemorrhagic fever (DHF) is a potentially fatal manifestation
of an infection with the mosquito-borne dengue virus. Because of the
social and economic costs of DHF, many countries in Asia and South
America have initiated public health measures aimed at vector con-
trol. Despite these measures, DHF incidence rates do not appear to be
declining. The effectiveness of vector control in reducing dengue
transmissibility has thereby been questioned. Here, we revisit this
conclusion using epidemiological data from Thailand. We first show,
with age incidence data, that dengue transmission rates have fallen
since 1981; surprisingly, however, these declines are not associated
with decreases in DHF incidence. Instead, district-level analyses indi-
cate a nonmonotonic relationship between the basic reproductive
number R0 and DHF incidence. To understand this relationship, we
formulated three mathematical models, which differ in their assump-
tions of transient between-serotype cross-protection. Unlike the first
two models, the previously unconsidered third model with clinical
cross-protection can reproduce this nonmonotonic relationship. Sim-
ulation of this model with nonstationary R0 reproduces several
previously unexplained patterns of dengue dynamics, including a
transition from a !2-year cycle to a !4-year cycle and a transient
trough in DHF incidence in provinces with rapid R0 declines. These
results imply that DHF incidence can be effectively controlled with a
sufficiently large reduction in R0 but that moderate reductions may be
counterproductive. More broadly, these results show that assuming
parameter stationarity in systems with approximate stationarity in
disease incidence is unjustified and may result in missed opportunities
to understand the drivers of disease variability.

dengue dynamics ! interannual disease variability ! multistrain dynamics

Dengue virus is endemic to Asia but has recently been classified
as an ‘‘emergent’’ or ‘‘reemergent’’ vector-borne disease in

many other parts of the world, including Africa and South America
(1). In human hosts, dengue infections cause a spectrum of symp-
toms, from a mild febrile illness to severe, life-threatening dengue
hemorrhagic fever (DHF). The virus exists as four distinct sero-
types, with the proportion of dengue cases caused by each serotype
changing dramatically between years. Epidemiological studies in-
dicate that homologous immunity provides nearly permanent pro-
tection against reinfection with a previously experienced serotype;
in contrast, heterologous immunity does not provide protection
against reinfection in the long term (2, 3). Instead, after a brief
period of heterologous cross-protection (2), previous infections are
considered risk factors for DHF (4, 5). [Similarly, maternal anti-
bodies have also been shown to be a risk factor for DHF in infants
(6, 7).] Because preexisting antibodies have long been held as the
causative agent for this enhancement in secondary (or later)
infections, this effect is commonly called antibody-dependent en-
hancement (ADE), although whether antibodies are the sole ex-
planation for this enhancing effect is still unclear (8).

Because of the severity of DHF infections, public health initia-
tives have been developed worldwide in an effort to control
dengue’s burden. Here, we focus exclusively on Thailand, where
many of the annual 200,000–500,000 DHF cases occur (9). This
region is also where the World Health Organization first developed
their diagnostic criteria for DHF (10); Thailand is, therefore, one

of the regions with the longest available time series of dengue and
DHF. Starting as early as the 1960s, Thailand initiated programs of
vector control through insecticide use, including the application of
both adulticide and larvicide (11, 12). Larvicide has been shown to
be especially effective in reducing larval abundance when properly
applied (13). These programs continued over the following decades.
Thailand formed a national committee to synthesize and reinforce
its Aedes aegypti control programs (14), and throughout the 1990s,
health authorities continued to reinforce the practice of applying
larvicide to individual households (15). In parallel with these
insecticide-based vector control programs, Thailand initiated pro-
grams based on health education (16) and trained health workers
regularly visited individual houses to encourage reduction of water
containers (17).

Despite these public health initiatives, a long-term decline in
DHF incidence has not been evident in Thailand. After the first
epidemics of DHF in Thailand in 1958 (18), DHF was reported
annually from all parts of Thailand by the end of the 1970s (19). The
next two decades witnessed the three largest epidemics of DHF in
Thailand, occurring in 1987, 1998, and 2001. Currently, dengue
illness is a source of considerable economic loss to health author-
ities (20), as well as to patients (21). Long-term increases in DHF
incidence rates are evident not only at the national level, but also
at local scales, indicating that DHF has not simply extended
spatially. When averaged over a 5-year sliding window, DHF
incidence rates across Thai changwats (provinces) between 1981
and 2004 have either remained relatively constant (e.g., Fig. 1e) or
have shown evidence of increase (e.g., Fig. 1 a and i). The absence
of a long-term decline in DHF incidence (and its overall increase
at the national level) is hypothesized to arise from a combination
of transmissibility-increasing factors: human population growth,
urbanization, expanding traffic (22), and ineffective public health
measures (23).

However, the interpretation of these temporal DHF patterns in
terms of rising transmissibility becomes problematic in light of
additional epidemiological data. Specifically, the mean age of DHF
patients has steadily risen since the 1980s (Fig. 1 c, g, and k),
doubling from 8.7 to 17 years between 1981 and 2004 in Thailand
as a whole. This dramatic increase in mean age of DHF cases has
occurred despite the age structure of the population remaining
relatively stable: according to the National Statistics Office of
Thailand, the average age in the entire population has only risen
from 26 to 33 years of age during this time period. This pattern is
also supported by data from a children’s hospital in Bangkok (24),
where the mean and mode age of children hospitalized with dengue
infection have both significantly increased during the period 1973–
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ities (20), as well as to patients (21). Long-term increases in DHF
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at local scales, indicating that DHF has not simply extended
spatially. When averaged over a 5-year sliding window, DHF
incidence rates across Thai changwats (provinces) between 1981
and 2004 have either remained relatively constant (e.g., Fig. 1e) or
have shown evidence of increase (e.g., Fig. 1 a and i). The absence
of a long-term decline in DHF incidence (and its overall increase
at the national level) is hypothesized to arise from a combination
of transmissibility-increasing factors: human population growth,
urbanization, expanding traffic (22), and ineffective public health
measures (23).

However, the interpretation of these temporal DHF patterns in
terms of rising transmissibility becomes problematic in light of
additional epidemiological data. Specifically, the mean age of DHF
patients has steadily risen since the 1980s (Fig. 1 c, g, and k),
doubling from 8.7 to 17 years between 1981 and 2004 in Thailand
as a whole. This dramatic increase in mean age of DHF cases has
occurred despite the age structure of the population remaining
relatively stable: according to the National Statistics Office of
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from 26 to 33 years of age during this time period. This pattern is
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genes play an important role in bacterial evo-
lution, including the evolution of antibiotic re-
sistance (30).
Although sequence data are extremely valu-

able, to link these data fully to disease dynamics,
it will be important to determine how sequence
changes affect functions related to pathogen fit-
ness, such as replication rate, transmissibility,
and immune recognition. Molecular epidemi-
ological studies often treat pathogen genetic

variation as simply reflecting the underlying
transmission process, whereas in reality such
variation may play an important role in deter-
mining transmission dynamics, as exemplified
by escape from herd immunity by influenza A
virus (31).
“Deep” sequencing of pathogens within in-

dividual hosts generates information on within-
host diversity, resulting from evolution within
the host (often in response to drug treatment),

or multiple infections. To tackle within-host di-
versity, models that embed pathogen evolution
within a transmission tree are needed. Such mod-
els, which cross the within- and between-host
scales, are only just becoming analytically and
computationally feasible despite being proposed
several years ago (32). Similarly, although pro-
gress has been made in scaling inference from
genes to genomes (33), scaling inference to large
numbers of sequences is lagging far behind.
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Fig. 2. Examples of counterintuitive effects of nonlinear infection dy-
namics. (A) Nonlinear interaction between prevalence of a helminth infec-
tion and infection pressure (as measured by the mean intensity of existing
infections) means that control measures must have a disproportionately large
impact on intensity before prevalence is reduced. This effect is predicted by a
mathematical model (solid line) and corroborated by field data (crosses) (129).
(B) Nonlinear relation between total number of cases of congenital rubella
syndrome (CRS) and rubella vaccine coverage, showing that suboptimal levels of
vaccine coverage cause worse health outcomes than no vaccination [adapted
from (130)]. The line shows model predictions; similar effects have been docu-

mented for real rubella control situations (131). (C and D) Modeling results of
rebound of gonorrhea transmission with different treatment strategies
without (C) and with (D) antimicrobial resistance developing [adapted from
(132)]. In the presence of resistance, focusing treatment on the high-risk core
group leads to an increase in prevalence approaching that of untreated base-
line prevalence, after an initially strong decline for more than a decade. (E)
Box plot from field data of a nonlinear relation between R0 for dengue trans-
mission and average dengue hemorrhagic fever (DHF) incidence across
Thailand, showing that control measures that reduce R0 may paradoxically
increase cases of DHF [adapted from (133)].
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Back to the Basic Reproductive Number 

 

So now we know everything… unfortunately not 
 
 

R0 is easy to write down in terms of model parameters, but some are difficult to measure  
directly 
 
 

Typically estimate R0 by some indirect method (e.g. epidemic growth rate, age-specific  
     seroprevalence curve, level of infection at equilibrium, inter-epidemic period) 
 
 

Estimates for dengue collected in a recent review (Nishiura 2006) ranged from 1.3 through 27 
     Most of the more plausible sounding estimates were between 3 and 6 
 

€ 

R0 = ma2bcDHDM P



 
 
PART III : More Detailed Epidemiological 

 Investigations 



Long-Term Epidemiological Monitoring Projects 

Some notable long-term epidemiological and entomological studies 
 
Tom Scott, UC Davis: Iquitos, Peru      Late 1990s-present 
 
 



Long-Term Epidemiological Monitoring Projects 

Tom Scott, UC Davis: Iquitos, Peru      Late 1990s-present 
 
 
 
 
 
 
 
 
 
Many types of ongoing study: 

 Active surveillance, infection clusters 
 Longitudinal cohort studies 
 Human movement studies 
 Human infectiousness studies (current)  
 Entomological surveys 

 



Cohort Studies and Force of Infection 

Recall problems with case data 
 
Cohort studies: test individuals for seroconversion against different 

serotypes periodically 
 
Problem: learn that person X has seroconverted some time between two 

tests, but not the exact time 
 

 statistical approaches to impute the seroconversion time or to find 
 the average rate of seroconversion at a given point in time 
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Infectious disease models play a key role in public health planning.
These models rely on accurate estimates of key transmission
parameters such as the force of infection (FoI), which is the per-
capita risk of a susceptible person being infected. The FoI captures
the fundamental dynamics of transmission and is crucial for gauging
control efforts, such as identifying vaccination targets. Dengue virus
(DENV) is a mosquito-borne, multiserotype pathogen that currently
infects ∼390 million people a year. Existing estimates of the DENV
FoI are inaccurate because they rely on the unrealistic assumption
that risk is constant over time. Dengue models are thus unreliable
for designing vaccine deployment strategies. Here, we present to
our knowledge the first time-varying (daily), serotype-specific esti-
mates of DENV FoIs using a spline-based fitting procedure designed
to examine a 12-y, longitudinal DENV serological dataset from
Iquitos, Peru (11,703 individuals, 38,416 samples, and 22,301 serotype-
specific DENV infections from 1999 to 2010). The yearly DENV FoI
varied markedly across time and serotypes (0–0.33), as did daily
basic reproductive numbers (0.49–4.72). During specific time periods,
the FoI fluctuations correlated across serotypes, indicating that dif-
ferent DENV serotypes shared common transmission drivers. The
marked variation in transmission intensity that we detected in-
dicates that intervention targets based on one-time estimates of
the FoI could underestimate the level of effort needed to prevent
disease. Our description of dengue virus transmission dynamics is
unprecedented in detail, providing a basis for understanding the
persistence of this rapidly emerging pathogen and improving
disease prevention programs.

disease ecology | emerging infections | arthropod-borne virus

The force of infection (FoI) describes the per-capita rate at
which susceptible individuals become infected with a patho-

gen (1, 2). An accurate estimate of the FoI is essential for pa-
rameterizing disease models (3). It can be used to calculate key
quantities such as the basic reproductive number (R0) (2, 4) and
the critical vaccination coverage threshold (pc) of a pathogen (5),
which are frequently used to guide disease control programs and for
determining the control effort required to eliminate a disease (6).
Dengue, a mosquito-borne disease whose incidence and geo-

graphic range have increased considerably in the past 50 y (7, 8),
is caused by any of four related but antigenically distinct virus
serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). Pre-
vious estimates of the FoI for DENV are few and uncertain
owing to limitations inherent to most available DENV datasets,
including difficulty in specifying when an individual DENV in-
fection occurred. Given the growing public health need for op-
timal vector management strategies and the growing potential
for deployment of a dengue vaccine in the near future (9), there

is a pressing need for accurate, serotype-specific estimates of the
FoI and pc for DENV. Here, we use a unique, long-term sero-
logical dataset from Iquitos, Peru to provide to our knowledge
the first such estimates.
Basic mathematical models of pathogen transmission, such as

the catalytic model where the FoI was initially introduced (1),
make simplifying assumptions about the parameters governing
transmission, including the frequent assumption that parameters
do not vary through time in epidemiologically important ways
(10). The assumption that the FoI is constant in time is, however,
inconsistent with current understanding of DENV epidemiology
because transmission clearly varies seasonally and year to year
(8, 11–14). Resolving the magnitude of temporal variations in
the quantities that govern or summarize transmission requires
(i) adequate, temporally resolved incidence data and (ii) de-
velopment of an estimation approach specifically designed to
use such a dataset to compute time-varying quantities.

Significance

Using mathematical models to extend knowledge of pathogen
transmission and recommend optimized control efforts is de-
pendent on the accuracy of model parameters. The rate at
which susceptible individuals become infected [the force of
infection (FoI)] is one of the most important parameters, but
due to data constraints it is often incorrectly assumed to be
constant over time. Using a bespoke method for a 12-y longi-
tudinal dataset of serotype-specific dengue virus (DENV) in-
fections, we estimated time-varying, serotype-specific FoIs for
all four DENV serotypes. The FoI varied markedly in time, which
implies that DENV transmission dynamics are complex and are
best summarized using time-dependent transmission parame-
ters. Our results provide more accurate measures of virus
transmission dynamics and a basis for improving selection of
control and disease prevention strategies.
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Cohort Studies and Force of Infection 

We could not estimate the function f before 1999 because we did not
have data before that date. Seroconversions that occurred before 1999 were
left-censored, allowing estimation of the proportion of the population that
was exposed before the beginning of the study. We defined κ as the pro-
portion of the population that had seroconverted before 1999:

κ =
Zt0

−∞

fðuÞdu, [2]

with t0 representing the beginning of the study. Using Eq. 2, the likelihood
of both right-censored and left-censored observations was rewritten using κ.

Model-Fitting Procedure. To estimate the pdf f, we used a Markov chain Monte
Carlo (MCMC) approach, specifically an adaptive, Metropolis-within-Gibbs algo-
rithm (34, 35) (for complete details on the fitting procedure, see SI Appendix,
section S4 and Figs. S12–S15). We ran 10 chains, each of length 100,000, and
evaluated convergence primarily by monitoring scale reduction factors (SI Ap-
pendix, Fig. S13) (36, 37), trace plots (SI Appendix, Fig. S14), and acceptance
probability plots (SI Appendix, Fig. S15). For our analysis, we combined the last
15,000 steps of each chain and randomly sampled 1,000 steps to remove auto-
correlation. The parameters were not independent of each other, so to create
credible regions for f (and later the FoI andR0)weused the1,000 sampled stepsof

the chain to create1,000estimatesof f. This formedanempirical estimate of the
posterior distribution of f. For each day, we then selected the middle 90%
of the estimates to form our Bayesian credible interval (BCI) at that point.
Throughout, in addition to BCIs, we present the posterior medians. There
were two parameters that a priori we knew would have identifiability and
convergence issues: the parameters corresponding to the very beginning
and very end of the study. We, therefore, truncated our estimates to the
region where our chains converged (SI Appendix, section S4 and Figs. S16
and S17). All analyses were done with R (38) and the R package fda (39). We
evaluated convergence with the R package CODA (40).

Parameter and Quantity Estimation.With our estimates of f we computed the
proportion of our study population (those born before 1995) still susceptible
at time t, denoted sðtÞ, as

sðtÞ= 1−
!
κ +

Zt

t0

fðuÞdu
"
: [3]

The FoI, λðtÞ, was then (SI Appendix, section S3)

λðtÞ= fðtÞ
sðtÞ

: [4]
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Fig. 1. Summary of participants and interval-censored infections. The top panel shows the total number of active participants across cohort studies from
1999 to 2010. The absence of a cohort study from late 2005 to mid-2006 is indicated by the gray shaded region. Remaining panels: After applying the se-
roconversion identification algorithm to the raw data the number of interval censored infections are plotted against time. For all, the midpoint of the interval
over which the infection was censored is used to time infections.
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Cohort Studies and Force of Infection 

(Methods), decreased for all serotypes (SI Appendix, Fig. S20).
At the end of the study, sðtÞ was reflective of the order of
serotype introductions into Iquitos: DENV-1 (first reported in
1990) = 22.9% (90% BCI: 21.9–23.9%), DENV-2 (first
reported in 1995) = 26.8% (90% BCI: 26.8–28.7%), DENV-3
(first reported in 2001) = 32.0% (90% BCI: 30.9–33.2%), and
DENV-4 (first reported in 2008) = 56.7% (90% BCI: 54.4–
58.6%). Unlike estimates for the sample population, the susceptible
proportion of the entire population of Iquitos, sPðtÞ, was relatively
stable for DENV-1 and DENV-2 (SI Appendix, Fig. S21). However,
susceptible estimates within Iquitos for the invading serotypes
(DENV-3 and DENV-4) decreased at rates similar to those within
the sample population (SI Appendix, Fig. S21). The estimated age
distribution of infections skewed toward younger individuals the
longer the serotype circulated within Iquitos (SI Appendix, Figs. S22
and S23 and section S5).

FoI. Depending on year and serotype, daily FoI estimates ranged
from 0 to 0.002 (Fig. 3), with the highest estimates being for DENV-3
and DENV-4. Although there was a gap between cohorts from
late 2005 to mid-2006, we did identify nonzero point estimates of
the FoI owing to the slight systematic increase in the proportion of
left-censored individuals that occurred after that period compared

with before. After analyzing the consistency of estimates across this
gap (SI Appendix, section S5 and Fig. S24), we found that the loss of
data increased median values and credible intervals of estimates
around the gap. Away from the gap, estimated FoI values were
consistent with those in Fig. 3. Further, the large credible intervals
and timing of the estimated peak FoI for 2004 (July 2004) may be
an artifact of the synchronized timing of blood draws in 2004.
Our longitudinal studies captured the introduction of a novel

DENV serotype twice. In late 2001/early 2002, the FoI of the
recently introduced DENV-3 was estimated to be significantly
nonzero, indicating circulation (11). Owing to the regular testing
of the longitudinal cohort participants, the timing of this increase
was distinguishable from that of DENV-1 and DENV-2 (Fig. 3).
This pattern was repeated at the time of the introduction of
DENV-4 in late 2008/early 2009. In both instances, the novel
serotype replaced the existing serotype(s). Weekly and monthly
estimates of the FoI (SI Appendix, Fig. S25 A and B) displayed
similar patterns.
There were periods when transmission of multiple serotypes

seemed to synchronize. We computed Spearman rank correlations
on daily estimates of the FoI between serotypes and found that
DENV-1, DENV-2, and DENV-3 were all highly correlated
(DENV-1/DENV-2: ρ12 = 0:77, DENV-1/DENV-3: ρ13 = 0:54,
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Fig. 3. Daily estimates of FoI. For each serotype, daily estimates of FoI as well as the 90% BCI are plotted against time. The absence of a cohort study from
late 2005 to mid-2006 is indicated by the gray shaded region.
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Cohort Studies and Force of Infection 

vaccination coverage. Using the highest estimated R0 values (for
DENV-3 from 2010), we conservatively calculated pc to be 79%.
Our yearly DENV FoI estimates mostly fell within the wide

range of previously calculated estimates conducted in a variety of
locations using an array of methods and datasets that often ag-
gregated across DENV serotypes. Yearly FoI estimates ranged
from 0.07– 0.14 (19) to 0.2–0.25 (4, 22) in Thailand to 0–0.3 (13)
in Brazil. Similar to the FoI, our estimates of the R0 of DENV
fell within the wide range of previously published values (1.3–
6.3) (44). As detailed in a review of previous R0 estimation
efforts (44), only three estimation methods used serotype-spe-
cific data (4, 19, 45), and only one of those was based on sero-
logical surveys (a study using single blood samples from 1,009
children all collected in early 1980) (4). Our estimates indicate
dengue is slightly more transmissible than directly transmitted
diseases such as severe acute respiratory syndrome (R0 ∼ 2‒5)
(46) and influenza (R0 ∼ 2‒3) (47) and less transmissible than fast-
spreading diseases such as measles and pertussis (R0∼ 12‒18 and
∼12–18, respectively) (48). Although our estimated critical
vaccination percentage of 79% was high, it was considerably
lower (and thus vaccination would be a more reasonable control
option) than that for measles and pertussis (∼92–94%).

Our serotype-specific approach revealed synchronous dy-
namics among DENV serotypes. There were high correlations in
both the daily and yearly estimates of FoI between DENV-1,
DENV-2, and DENV-3. DENV-1, DENV-2, and DENV-4 all
achieved their local maxima at essentially the same time in 2010.
There were several transmission seasons when, independent of
the size of the serotype-specific susceptible pool, there seemed
to be more than 40 seroconversions to at least three different
serotypes (Fig. 2), specifically in 2004, 2008, and 2010, even
though for at least 2004 surveillance data suggested a single se-
rotype dominated (30). Even under stricter schemes for identi-
fication of seroconversions (SI Appendix, section S2 and Fig.
S33), there remained periods where multiple serotypes seemed
to circulate concurrently. This emphasizes the potential for dif-
ferences between patterns of disease (i.e., clinically apparent
infections) and patterns of infection. A study identifying the
timing of serotype-specific outbreaks of dengue in Thailand (49)
similarly identified seasonal synchronization across serotypes,
specifically between DENV-1, DENV-2, and DENV-3. DENV-4,
however, was reported to be out-of-phase. Our estimated FoIs
for DENV-1, DENV-2, and DENV-4 were at or close to their
highest values at almost the exact same time in 2010, indicating
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Fig. 5. Daily estimates ofR0. For each serotype daily estimates ofR0 as well as the 50% BCI are plotted against time. The absence of a cohort study from late
2005 to mid-2006 is indicated by the gray shaded region. The estimates for both DENV-3 and DENV-4 are truncated, excluding estimation before their re-
spective introductions.
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Big Question: How Important Are Heterogeneities? 

Mosquito and human populations are highly structured and heterogeneous: 
              

       age structure of mosquito population  
 
 
            spatial structure:  

 containers and houses 
 
 Iquitos, Peru (Pictures from Amy Morrison  

               and Google Earth) 

How much does this matter for the spread of dengue? 



Big Question: How Important Are Heterogeneities? 

n  Examples of Heterogeneities: 
 differences in infectiousness or susceptibility 
 differing chances of getting bitten or of biting 
 differing productivities of different houses 
 mixing patterns of populations (e.g. spatial structure) 

 
n  80/20 “rule” (Woolhouse et al.) 

  80% of all transmission is due to 20% of all individuals 
 

n  Example: de Benedictis et al. (2003): 
 
DNA profiling of blood meals in Ae. aegypti collected in 22 houses in Florida, PR 

 about 100 residents, field workers and visitors connected to the houses  
 identified sources of 80% of the blood meals 

  
Feeding non-random (P=2.4×10-17) with a bias towards young adults and males 

 
Three people accounted for 56% of the meals 

 
 
How much does this matter for the spread of dengue? 
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Introduction

Mosquito blood feeding behavior is epidemiologically impor-
tant because of its central role in determining which vertebrate
hosts and mosquitoes are exposed to a pathogen. Aedes aegypti, the
principal mosquito vector of dengue (DENV) and urban yellow
fever viruses [1] is highly anthropophilic, feeding predominantly
on people during daylight hours and tending to travel short
distances to obtain its blood meals [2,3,4,5]. Females often take
more than one blood meal per gonotrophic cycle [6], increasing
their probability of (1) imbibing an infected blood meal and (2)
after surviving an extrinsic incubation period, becoming infectious,
and transmitting virus to an uninfected person [7]. These beha-
viors lead to the assumption that the risk of DENV infection is
highest at the scale of individual locations; the places where female
Ae. aegypti feed and people live or visit [8,9,10,11,12]. Even at this
fine scale, however, predicting infection risk remains difficult

because some individuals are bitten more often than others for
reasons that are poorly understood [13,14,15,16,17,18,19,20].

A better understanding of who gets bitten more often and
why would be useful for designing targeted methods of dengue
prevention as well as for developing mathematical models of virus
transmission. Although models have traditionally assumed that
mosquitoes bite people randomly [21], growing empirical evidence
indicates that mosquito biting patterns are heterogeneous and
theoretical work indicates that this can have important impacts
on transmission dynamics [22,23,24]. In particular, people who
receive many more mosquito bites than others could act as
superspreaders of a pathogen, infecting a disproportionate number
of vectors and thus playing a central role in pathogen transmission
dynamics [25]. Identifying these people is, therefore, key for
effective, targeted disease control strategies [20]. A number of
factors have been identified that may make some people more
likely to be bitten than others: host body size (larger people being
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principal mosquito vector of dengue (DENV) and urban yellow
fever viruses [1] is highly anthropophilic, feeding predominantly
on people during daylight hours and tending to travel short
distances to obtain its blood meals [2,3,4,5]. Females often take
more than one blood meal per gonotrophic cycle [6], increasing
their probability of (1) imbibing an infected blood meal and (2)
after surviving an extrinsic incubation period, becoming infectious,
and transmitting virus to an uninfected person [7]. These beha-
viors lead to the assumption that the risk of DENV infection is
highest at the scale of individual locations; the places where female
Ae. aegypti feed and people live or visit [8,9,10,11,12]. Even at this
fine scale, however, predicting infection risk remains difficult

because some individuals are bitten more often than others for
reasons that are poorly understood [13,14,15,16,17,18,19,20].

A better understanding of who gets bitten more often and
why would be useful for designing targeted methods of dengue
prevention as well as for developing mathematical models of virus
transmission. Although models have traditionally assumed that
mosquitoes bite people randomly [21], growing empirical evidence
indicates that mosquito biting patterns are heterogeneous and
theoretical work indicates that this can have important impacts
on transmission dynamics [22,23,24]. In particular, people who
receive many more mosquito bites than others could act as
superspreaders of a pathogen, infecting a disproportionate number
of vectors and thus playing a central role in pathogen transmission
dynamics [25]. Identifying these people is, therefore, key for
effective, targeted disease control strategies [20]. A number of
factors have been identified that may make some people more
likely to be bitten than others: host body size (larger people being
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models, a power function of surface area by itself also did a
good job of explaining heterogeneous biting patterns in the data
(Table 4; Figure 5B; p,0.001). In contrast to time in house,
surface area had a super-linear relationship (fitted power term 1.4),
indicating that incremental increases in surface area result in
more than equivalent increases in biting score. Combining surface
area with time in house again had the best AIC of all power
models, and significantly improved model fit (p = 0.038; Table 4;
Figure 5C). Biting probabilities predicted by the power model with
time in house and surface area are shown in Figure 3 for each
house in which a human source of a blood meal was positively
identified.

Neither linear nor power functions provided better fits to
the data, both having similar optimal AIC scores (321.84 vs
321.286).

Discussion

Understanding how female Ae. aegypti distribute their bites
among human hosts is necessary to develop accurate models that
ultimately assist in the design and implementation of more
efficacious surveillance and disease control strategies. Our results
indicate that, within a given household in Iquitos, Ae. aegypti more
often bit larger people and those spending more time in the house,
highlighting the importance of human movement behavior in
determining individual risk of exposure to the viruses Ae. aegypti
transmit. These factors predispose some individuals to receive
more bites than others, with potentially important epidemiological
effects. For instance, we expect the role of children in transmission
to be less during the invasion of a new serotype, when immuno-
logically naı̈ve adults can become infected with, amplify, and

Figure 2. Joint distributions of reported total weekly time in a house and body surface area across all study participants measured
on eight separate occasions. Red dots indicate individuals whose blood was identified in mosquitoes.
doi:10.1371/journal.pntd.0002702.g002

Heterogeneous Blood Feeding by Aedes aegypti
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Big Question: How Important Are Heterogeneities? 

n  Heterogeneity often increases R0 , and by a factor that reflects the degree of 
heterogeneity 

  

 R0 is multiplied by 1 + CV2
 

  
High degree of heterogeneity means that CV2 is much larger than one and  
   that the naïve value of R0 (ignoring heterogeneity) can be a severe underestimate  

 
 In the setting of malaria in Africa, Dave Smith and colleagues obtained a wide range of 
estimates of R0  (IQR: 30-815).  Are things as bad for dengue? 

 
n  Increase in R0 due to heterogeneity facilitates disease invasion/persistence,  

 but prevalence is lower than in homogeneous situation 
 

n  Reduction in prevalence and/or eradication is more difficult using uniform control 
measures, but targeted control can be highly beneficial IF you can identify and reach the 
relevant subpopulation 

 
(Florida, PR example: those three people contributed enormously to transmission)  



Big Question: How Important Are Heterogeneities? 

n  Populations are far from spatially ‘well-mixed’  
 
 

n  Movement patterns of people? 
 GPS tracking data, cellphone tracking    

 
n  Where do people get infected?  

  
 Important as WHO guidelines recommend localized spraying around the homes 
 of infected individuals 

 
 
Tom Scott/Uriel Kitron’s activity space study in Iquitos 
 
 

n  Movement of people likely to be more important than movement of mosquitoes 
 for spread of dengue 
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Abstract

Empiric quantification of human mobility patterns is paramount for better urban planning, understanding social network
structure and responding to infectious disease threats, especially in light of rapid growth in urbanization and globalization.
This need is of particular relevance for developing countries, since they host the majority of the global urban population
and are disproportionally affected by the burden of disease. We used Global Positioning System (GPS) data-loggers to track
the fine-scale (within city) mobility patterns of 582 residents from two neighborhoods from the city of Iquitos, Peru. We
used ,2.3 million GPS data-points to quantify age-specific mobility parameters and dynamic co-location networks among
all tracked individuals. Geographic space significantly affected human mobility, giving rise to highly local mobility kernels.
Most (,80%) movements occurred within 1 km of an individual’s home. Potential hourly contacts among individuals were
highly irregular and temporally unstructured. Only up to 38% of the tracked participants showed a regular and predictable
mobility routine, a sharp contrast to the situation in the developed world. As a case study, we quantified the impact of
spatially and temporally unstructured routines on the dynamics of transmission of an influenza-like pathogen within an
Iquitos neighborhood. Temporally unstructured daily routines (e.g., not dominated by a single location, such as a workplace,
where an individual repeatedly spent significant amount of time) increased an epidemic’s final size and effective
reproduction number by 20% in comparison to scenarios modeling temporally structured contacts. Our findings provide a
mechanistic description of the basic rules that shape human mobility within a resource-poor urban center, and contribute
to the understanding of the role of fine-scale patterns of individual movement and co-location in infectious disease
dynamics. More generally, this study emphasizes the need for careful consideration of human social interactions when
designing infectious disease mitigation strategies, particularly within resource-poor urban environments.
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Introduction

Routine movements of individuals within cities are of
paramount importance for planning urban infrastructures [1],
developing transport and commuting alternatives [1,2], improving
wireless communication networks [3,4], promoting healthy
lifestyles [5], and preventing or responding to emergence,
propagation and persistence of infectious disease [6–11]. People
routinely engage in activities that vary in relative frequency and
duration as well as in geographic location and, more importantly,
their spatial behavior can be affected by changes in social and
economic contexts [12]. Understanding the statistical patterns that
characterize human mobility within cities poses fascinating

scientific questions and major methodological, technical and
ethical challenges [13,14], particularly when aiming at under-
standing their role in spatio-temporal human-mediated processes
such as infectious disease transmission [6–11].

Early mathematical models of infectious diseases assumed
individuals as having an equal chance of transmitting and getting
exposed to disease agents (i.e., homogenous mixing), ignoring
stochastic variations in transmission potential or heterogeneities in
contact patterns [15]. Empirical evidence shows that contact rates
are indeed highly heterogeneous [10,16,17], in part owing to the
complex and dynamic fabric of human social relationships [10,18].
Therefore, individual social structure and movement patterns play
a significant role in modulating contact rates, affecting the
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neighborhoods continuously for 15 days in order to capture their
average fine-scale spatial routine. Most (77%) GPS tracking of
school age children was performed during the period when schools
were in session.

The analyzed trajectories from 582 participants (see ‘‘subject
pool’’ section in File S1 and Table S1 in File S2 for details on
participant pool) included 2,299,718 raw GPS positions tagged
with date, time, elevation, latitude and longitude (Figure 1A). A
data reduction algorithm that aggregates consecutive GPS
readings located within pre-specified spatial and temporal
windows was used to identify the geographic position and total
time a participant spent at a given place. This algorithm (named I-
cluster) aggregates GPS readings that are within a spatial (d) and
temporal (t) window and estimates the total time a participant
spent within such spatio-temporal buffer [35]. Gaps in the GPS
data associated with an I-cluster identified place can emerge due to
signal loss or an individual leaving the place and returning t
minutes later (i.e., intermittent visits). The I-cluster algorithm uses
a threshold time (tintv = 30 min) to separate between data gap
types [35] (tintv,30 minutes indicated a transient loss of GPS
signal and tintv.30 minutes indicated a participant revisited the
location t minutes after the first visit). Refer to [35] for a detailed
description and code of the I-cluster algorithm. Based on the

inherent error of GPS data, we set the algorithm’s parameters as
d = 20 m and t = 15 min [34].

The lot code and land-use description (residential, commercial,
recreational, health, religion, others) of the places visited by each
participant were determined by joining the I-cluster data with our
highly detailed and frequently updated Geographic Information
System (GIS) of the city of Iquitos [36]. For each identified place,
the total time of permanence (in minutes) and the total time and
frequency of visits were registered. The temporal patterns of
visitation to each I-cluster identified place were assessed by
determining, from the raw GPS locations, the day of the week and
time of the day each visit occurred. Independent analyses of
simultaneous GPS and Semi Structured Interview mobility data
from 101 Iquitos residents show that, of 1,455 identified locations,
11.3% were concordant between methods, whereas 65.8% were
identified only by interviews and 22.8% by the I-cluster algorithm
only (Paz-Soldan et al. unpublished data). As reported in a
systematic review, the rates of GPS data loss or mismatch could
emerge from signal drop-outs, dead batteries, participants’ not
wearing the units, signal loss during the initialization period or
misuse of the device [28]. To minimize this issue, we: (1)
individually explored the raw GPS data from each participant
for places not identified by the I-cluster algorithm (i.e., not
statically visited by participants, like parks or markets, or places

Figure 1. Mobility parameters inferred from GPS data-logger data. (A) Raw GPS locations (,2.3 million points) obtained from tracking the
movements of 582 individuals. Map inset shows out-of-city movements. (B) Human movement kernels (probability of movement outside an
individual’s home (P(Dd)) for all individuals and for different age groups. Inset in frame B shows the probability of movement within 1 km from an
individual’s home. (C) P(Dd) for males and females. (D) Spatial wavelet variance (black line) as a function of the angle from a person’s home (h).
Anisotropy is detected when variance is higher than the randomness expectation (grey line). (E) The probability distribution of the number of places
an individual routinely visited. (F) The relative frequency of visitation across type of places.
doi:10.1371/journal.pone.0058802.g001
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developing transport and commuting alternatives [1,2], improving
wireless communication networks [3,4], promoting healthy
lifestyles [5], and preventing or responding to emergence,
propagation and persistence of infectious disease [6–11]. People
routinely engage in activities that vary in relative frequency and
duration as well as in geographic location and, more importantly,
their spatial behavior can be affected by changes in social and
economic contexts [12]. Understanding the statistical patterns that
characterize human mobility within cities poses fascinating

scientific questions and major methodological, technical and
ethical challenges [13,14], particularly when aiming at under-
standing their role in spatio-temporal human-mediated processes
such as infectious disease transmission [6–11].

Early mathematical models of infectious diseases assumed
individuals as having an equal chance of transmitting and getting
exposed to disease agents (i.e., homogenous mixing), ignoring
stochastic variations in transmission potential or heterogeneities in
contact patterns [15]. Empirical evidence shows that contact rates
are indeed highly heterogeneous [10,16,17], in part owing to the
complex and dynamic fabric of human social relationships [10,18].
Therefore, individual social structure and movement patterns play
a significant role in modulating contact rates, affecting the
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Simple and Complex Models 

realism 

analytical power 

level of detail 

Simple models  
 

no structure 
well-mixed 

deterministic 

Intermediate  
complexity 

 
age structure 

spatial structure 
stochasticity 

… 

Detailed, 
biology-rich model 
of Aedes aegypti : 

Skeeter Buster 

Spatial structure: PDE models, stepping stone/lattice models 
 
Age structure: matrix models 

Theme underlying our research: what level of complexity is appropriate for modeling 
various aspects of the population and disease system? 



Two broad alternative approaches: 
 
1.  Reduce number of mosquitoes 

 
 population suppression or eradication 

2.  Replace existing mosquito population with one that is less able to transmit the 
 infection 
  
 population replacement 

 
 Wolbachia symbiont 

 New Genetic Control Methods 



Wolbachia Protects Mosquitoes Against Dengue Infection  

Moreira et al. (2009, Cell: 139, 1268) found that the popcorn strain of Wolbachia protects mosquitoes against 
dengue infection  

 
In one set of experiments: feeding mosquitoes dengue-infected blood led to dengue infection in 
70 % of non-Wolbachia mosquitoes (n = 40) 
65 % of antibiotic treated Wolbachia mosquitoes (n = 40) 
5 % of Wolbachia mosquitoes  (n = 40) 
 
 
Double whammy: life shortening and virus protection 



Stochastic Model: Invasion Probabilities 

Stochastic model: reinterpret rates of deterministic model as transition rates (probabilities) 
         describing discrete transitions 

 
 
 
 
 
 
Neither invasion nor persistence are guaranteed when R0 > 1 
 
Use branching process formulation to describe (approximate) invasion process 

corresponds to assuming no. of susceptible hosts ≈ H and no. of susceptible vectors ≈ V 
equivalent to linearizing system about infection free equilibrium 
      (Bartlett 1964, Griffiths 1972, Ball 1983) 

 
Need to use multi-type (two-type) branching process 

     



Stochastic Model: Invasion Probabilities 

Recall analysis from simple infection model 
 

If infected individual causes infections randomly at rate β (Poisson process), and 
recovery process occurs at rate γ (exponential distribution of duration of infection, 
average = 1/γ) 
 
Number of offspring, Z , has geometric distribution, with mean R0 = β/γ 
 
Branching process formulation utilizes generating function  
 

 GZ(s) = E[sZ] = 1/(1 + R0(1-s) ) 
 

 Solve fixed point equation and find probability of extinction starting from one infective 
 
 Invasion (“major outbreak”) said to occur if branching process does not go extinct 

 
 If R0 > 1, invasion occurs with probability 1-1/R0 

 
 If R0 < 1, invasion occurs with probability 0 

 



Two-type Branching Process 

Notation:  
XHH  number of secondary host infections caused (directly) by one infectious host 
 XHV  number of secondary vector infections caused (directly) by one infectious host 

 
 XVH  number of secondary host infections caused (directly) by one infectious vector 
 XVV  number of secondary vector infections caused (directly) by one infectious vector 

 
Note:   XHH = XVV = 0 
 

 



Two-type Branching Process 

Generating functions: 
 
Hosts:   

 
 Vectors: 

 
If  XHV ~ Geometric, mean R0

HV     and   XVH ~ Geometric, mean R0
VH   , then 

  
 
 
 
Probability that an epidemic does not occur is found by solving 
 
 
 
 

GH sH, sV( ) = E sH
XHH sV

XHV!" #$= E sV
XHV!" #$

GV sH, sV( ) = E sH
XVH sV

XVV!" #$= E sH
XVH!" #$

Recall:   XHH = XVV = 0 
 

 

GH sH, sV( ) = 1
1+ R0

HV 1− sV( )
and GV sH, sV( ) = 1

1+ R0
VH 1− sH( )

GH sH, sV( ) = sH and GV sH, sV( ) = sV



Two-type Branching Process 

  
 
 
Probability that an epidemic does not occur is found by solving 
 
 
Notice GH does not depend on sH and GV does not depend on sV , so we can suppress 

unimportant arguments and write 
 
 
So we have to solve 
 
 
 
Notice, this should not be a surprise because composing the two generating functions gives  

the generating functions for the two-step processes VèHèV and HèVèH ,  
i.e. following one complete lifecycle. 

 

GH sH, sV( ) = 1
1+ R0

HV 1− sV( )
and GV sH, sV( ) = 1

1+ R0
VH 1− sH( )

GH sH, sV( ) = sH and GV sH, sV( ) = sV

GH sV( ) = sH and GV sH( ) = sV

GH GV sH( )( ) = sH or (equivalently) GV GH sV( )( ) = sV



Stochasticity: Invasion Probabilities 

If R0 (=R0
HVR0

VH) > 1, then major outbreak probabilities are : 
 

    following the introduction of a single infectious vector 
 
 

      
   following the introduction of a single infectious host 

 
 
Asymmetry in invasion probability:  
 

 if R0
HV  ≠  R0

VH, it matters whether an introduction occurs via host or vector,  
 even if the overall R0 is the same  

 
 Invasion is more likely if introduction occurs via the type with the higher R0 



Stochasticity: Invasion Probabilities 

     Invasion probability from one infective vector 
  
Contours of equal invasion probability 
 (solid) 
 Contours of equal overall R0 (dashed)  

 
 
 
 
For a given R0 , invasion probability is  

larger if R0
VH is greater than R0

HV 
 

(Look at topmost dashed curve:  R0 = 10 
if vector to host R0 is 5, inv. prob. = 0.75 
if vector to host R0 is 2, inv. prob. = 0.6 ) 
 



Stochasticity: Variation Around Endemic Equilibrium 

Deterministic model 
If R0 > 1 the system approaches a  

stable endemic equilibrium 
 
Stochastic model, R0 > 1 
If invasion is successful, system approaches 

endemic state 
  

Variation is seen between realizations 
 

Realizations continue to fluctuate about 
equilibrium of the deterministic model 
 
 mean +/- standard deviation : 
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Stochasticity: Variability About Endemic Equilibrium 

Use moment equations to quantify how (e.g.) variance of I changes over time 
 
Use the general result               
 

to derive the following set of moment equations: 
 
 
 
 
 
 
 
 
 
 
 

 
 

d
dt
E f (Y, I )[ ] = E λ j (Y, I ) ⋅ Δf (Y, I ) j#$ %&

j
∑



Stochasticity: Variability About Endemic Equilibrium 

Stochastic process is nonlinear, so moment equation set is not closed 
 

- first order moment equations involve second order moments 
 - second order moment equations involve third order moments 

 

 - must use moment closure approximation e.g. multivariate normal approximation 
 

 - assumes that third order central moments are zero 
  - e.g.                                                         -- gives E[Y2I ] in terms of lower moments 

 

 
Often gives a good approximation: 
 
Curves: from moment equations + MVN 
Symbols: numerical estimates of moments based 

on 10 000 realizations of the model 

E (Y −E[Y ])2{ } I −E[I ]{ }"
#

$
%= 0



Quasi-Stationary Distribution 

( y , i ) = ( 0 , 0 ) is an absorbing state of the Markov chain model 
 (no infection!) 

 
Eventually, infection will go extinct, although timescale could be very long 
 
Look at probabilities conditional on non-extinction: 
 
 
 
Quasi-stationary distribution is  
 
Can find this by forming a rate matrix Q  (paper uses notation A), eliminating rows and columns 

corresponding to the absorbing states, and finding the normalized left eigenvector 
associated with the largest eigenvalue 

 
Matrix is large, but sparse 

qt (y, i) = P Y (t) = y, I(t) = i Y (t)+ I(t)> 0{ }

=
P Y (t) = y, I(t) = i{ }
1−P Y (t) = I(t) = 0{ }

lim
t→∞

qt (y, i)



Stochasticity: Variability About Endemic Equilibrium 

 
Comparison between exact calculation of quasi-stationary distribution (Nåsell, 1991; black 

curves) and that obtained using moment equations + MVN (red curves) 
 
Works well, although notice discrepancies in the tails, particularly if the distribution has noticeable weight near 

boundaries 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(Nåsell (1991) Math. Biosci. 107, 187.) 

 
 



Further directions…   

Ross model is highly simplified: 
 
Latent period in both vector (“extrinsic incubation period”) and host (“intrinsic 
incubation period”) 
 
Population dynamics of mosquitoes 
Demography of human population 
 
Human infection is more likely SIR (or SEIR) than SIS 

 - increases variability about endemic equilibrium 
 
Heterogeneity in populations 

 - populations are not well-mixed (e.g. spatial distribution) 
 - mosquitoes prefer to bite some people rather than others 
   (80-20 rule…) 

 




