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Abstract Estimation of epidemiological parameters from disease outbreak data
often proceeds by fitting a mathematical model to the data set. The resulting param-
eter estimates are subject to uncertainty that arises from errors (noise) in the data;
standard statistical techniques can be used to estimate the magnitude of this uncer-
tainty. The estimates are also dependent on the structure of the model used in the
fitting process and so any uncertainty regarding this structure leads to additional
uncertainty in the parameter estimates. We argue that if we lack detailed knowledge
of the biology of the transmission process, parameter estimation should be accom-
panied by a structural sensitivity analysis, in addition to the standard statistical
uncertainty analysis. Here we focus on the estimation of the basic reproductive num-
ber from the initial growth rate of an outbreak as this is a setting in which parameter
estimation can be surprisingly sensitive to details of the time course of infection.

1 Introduction

Estimation of epidemiological parameters, such as the average duration of infec-
tiousness or the basic reproductive number of an infection, is often an important
task when examining disease outbreak data [see, for example, 12, 19, 26]. In many
instances, one or more parameters of interest cannot be estimated directly from the
available data, so an indirect approach is adopted in which a mathematical model
of the transmission process is formulated and is fitted to the data. The resulting
parameter estimates will have uncertainty due to noise in the data but they will also
depend on the form chosen for the model. Any uncertainties in our knowledge of the
biology underlying the transmission process lead to uncertainties in the parameter
estimates over and above those that arise from noise in the data.

Standard statistical approaches (see Chapters 1, 5, 7, 10 and 11 of this book) can
be used to quantify the uncertainty in parameter estimates that arises from noise in
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the data, but these are not designed to provide insight into the sensitivity of the esti-
mates to the structure of the model. In this chapter, we demonstrate that uncertainty
due to model structure can, in some instances, dwarf noise-related uncertainty by
discussing an estimation problem in which details of the description of the biology
of the transmission process can have an important impact. This argues that when
there is incomplete knowledge of the biology of the infection, structural sensitiv-
ity analysis should accompany statistical uncertainty analysis when model-based
approaches are used to interpret epidemiological data.

In this chapter, we illustrate the potential importance of model assumptions
by examining the model-based estimation of the basic reproductive number using
data obtained from the initial stages of a disease outbreak. We review studies
[21, 25, 27, 31, 33, 34] that illustrate that such estimates can be highly sensitive
to the assumptions made concerning the natural history of the infection, particularly
regarding the timing of secondary transmission events. These results are of major
significance in the setting of emerging infectious disease outbreaks, when a rapid
quantification of the basic reproductive number is highly desirable to guide control
efforts, but when information on the transmission cycle may be scarce. Importantly,
the work shows that the use of simple models can greatly underestimate the value
of the basic reproductive number, providing overly optimistic predictions for how
effective control measures have to be in order to curtail the spread of the disease.

2 The Basic Reproductive Number and Its Estimation
Using the Simple SIR Model

The basic reproductive number, R0, is defined as the average number of secondary
infections caused by a typical infective individual in an otherwise entirely sus-
ceptible population [see, for example, 11]. In the simplest settings, its value can
be calculated as the product of the rate at which such an individual gives rise to
infections and the duration of their infectious period. In turn, the infection rate is
a product of the rate at which an infective meets susceptible individuals, i.e. the
contact rate, and the per-contact probability of transmission.

Direct estimation of the basic reproductive number could be undertaken if sec-
ondary infections of individual infectives could be quantified. Unfortunately, the
most commonly available type of data—aggregated incidence data—does not reveal
transmission chains in sufficient detail to identify the source of secondary cases.
More detailed data, such as contact tracing data, can elucidate chains of transmis-
sion, but is rarely complete enough to allow direct calculation of R0. In the absence
of complete contact tracing data, statistical techniques have been suggested for the
estimation of R0 via reconstruction of transmission chains [13, 32].

The basic reproductive number could also be directly estimated if both the con-
tact rate and transmission probability were known. Again, direct estimation of
these quantities is typically difficult. Transmission probabilities can be estimated
using certain types of epidemiological data, obtained, for instance, from observation
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of transmission within families, or other transmission experiments. Such data,
however, are often unavailable during the early stages of a disease outbreak.

An alternative approach involves fitting a mathematical model to outbreak data,
obtaining estimates for the parameters of the model, allowing R0 to be calculated.
The simplest model that can be used for this purpose is the standard deterministic
compartmental SIR model [see, for example, 11]. Individuals are assumed to either
be susceptible, infectious or removed, with the numbers of each being written as
S, I , and R, respectively. Susceptible individuals acquire infection through con-
tacts with infectious individuals, and the simplest form of the model assumes that
new infections arise at rate βSI/N . Here N is the population size and β is the
transmission parameter, which is given by the product of the contact rate and the
transmission probability. Recovery of infectives is assumed to occur at a constant
rate γ , corresponding to an average duration of infection of 1/γ , and leads to per-
manent immunity. Throughout this chapter we shall denote the average duration of
infectiousness by DI and assume permanent immunity following infection. We shall
also ignore demographic processes (births and deaths), which is a good approxi-
mation if the disease outbreak is short-lived and the infection is non-fatal. Ignoring
demography leads to the population size N being constant. The model can be written
as the following set of differential equations

dS/dt = −βSI/N (1)

dI/dt = βSI/N − γ I (2)

dR/dt = γ I. (3)

During the early stages of an outbreak with a novel pathogen, almost the entire
population will be susceptible, and, since S ≈ N , the transmission rate equals
β I . The transmission parameter β is the rate at which each infective gives rise
to secondary infections and so the basic reproductive number can be written as
R0 = βDI = β/γ . During this initial period, the changing prevalence of infec-
tion can, to a very good approximation, be described by the single linear equation
d I/dt = γ (R0 − 1)I. (We remark that the S = N assumption corresponds to
linearizing the model about its infection free equilibrium.) In other words, provided
that R0 is greater than one, which we shall assume to be the case throughout this
chapter, prevalence initially increases exponentially with growth rate

r = γ (R0 − 1). (4)

The incidence of infection is given by βSI/N and so, during the early stages of
an outbreak, prevalence and incidence are proportional in the SIR setting, so this
equation also describes the rate at which incidence grows.

Equation (4) provides a relationship, R0 = 1 + r DI, between R0 and quan-
tities that can typically be measured (the initial growth rate of the epidemic and
the average duration of infection), and as a result has provided one of the most
straightforward ways to estimate R0.
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3 More Complex Compartmental Models

The SIR model of Section 2 employs a very simple, but quite unrealistic, descrip-
tion of the time course of infection. The infectious period is assumed to start
immediately upon infection, and the constant recovery rate corresponds to infec-
tious periods being exponentially distributed across the population. In reality, there
is a delay—the latent period—between acquisition of infection and the start of
infectiousness: an individual typically receives a small dose of an infectious agent
and several rounds of replication have to occur within the infected person before
they become infectious. The exponential distribution has a much larger variance
than infectious period distributions observed in the real world: it predicts that
a large number of individuals recover very soon after infection and that a size-
able number of individuals have infectious periods that are much longer than the
average. In reality, infectious periods are much more closely centered about their
mean [2, 4].

3.1 Inclusion of Latency

A latent period can easily be incorporated within the compartmental framework with
the addition of an exposed class (E) of infected but not yet infectious individuals.
Assuming that movement between the E and I classes occurs at a constant per-capita
rate of σ , we get the standard SEIR model

dS/dt = −βSI/N (5)

dE/dt = βSI/N − σ E (6)

dI/dt = σ E − γ I. (7)

The latent period here is exponentially distributed with average duration 1/σ .
Throughout this chapter, we shall refer to the average duration of latency as DE.
The inclusion of the exposed class does not affect the algebraic expression for the
basic reproductive number: we again have R0 = βDI = β/γ .

The initial behavior of an outbreak can be well described by a linear model,
consisting of Equations (6) and (7) with the transmission term being replaced by β I .
Provided that R0 is greater than one, and following an initial transient, prevalence
increases exponentially at rate r given by the dominant eigenvalue, the value of
which is the larger of the roots of the quadratic

r2 + (σ + γ )r − σγ (R0 − 1) = 0. (8)

Provided that both the average durations of latency and infectiousness are known,
Equation (8) can be rearranged to give R0 in terms of the initial growth rate, giving
R0 = (1+r DE)(1+r DI) [19, 25]. As for the SIR model, the incidence of infection
will also grow at this rate.
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Intuitively, it is clear that latency will decrease the initial growth rate of an out-
break: latency delays the start of an individual’s infectious period, making their
secondary infections occur later than they would if infectiousness were to begin
immediately. This can be confirmed mathematically by comparing the roots of
Equations (4) and (8). The constant coefficient of the quadratic in Equation (8) is
equal to the product of its roots, and, because R0 is greater than one, its value is
negative. The quadratic therefore has one negative and one positive root. The value
of the quadratic is negative when r = 0 and positive when r = γ (R0 − 1) and so its
positive root lies in the interval (0, γ (R0 − 1)). The growth rate for the SEIR model
is lower than it was for the SIR model.

This effect is illustrated in Fig. 1, where the prevalence of infection seen in an
SIR model outbreak (solid curve) is compared to that seen in the corresponding
SEIR model (dotted curve). In both cases, the average infectious period is 5 days and
R0 is 5, and for the SEIR model there is a two day average duration of latency. At
the initial time the entire population of one million people is taken to be susceptible
except for a single infective individual. The latent period has a dramatic effect on
the initial growth, and indeed on the entire timecourse, of the outbreak. (We remark
that the non-exponential change in prevalence seen at the start of the outbreak in the
SEIR model is the transient behavior mentioned above and arises from the second,
negative, value for r in Equation 8).
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Fig. 1 Impact of latency on a disease outbreak, comparing SIR and SEIR models. Solid curve:
no latent period (SIR model). Dotted curve: exponentially-distributed latent period (SEIR model).
The inset (plotted on log-linear axes) focuses on the initial behavior of the two outbreaks, when
the epidemics are well-described by linear models, and shows the slower initial growth rate of the
SEIR outbreak. The average infectious period is taken to be DI = 5 days, R0 is 5, and, for the
SEIR model, the latent period has an average duration of DE = 2 days. At the initial time, the
entire population of N = 106 is susceptible to the infection, except for one individual who is taken
to have just become infectious
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3.2 More General Compartmental Models: Gamma
Distributed Latent and Infectious Periods

An individual’s chance of recovery is not constant over time: typically, the recov-
ery rate increases over time. In terms of a mathematical model, this leads to the
complication that the times at which different individuals became infected must be
tracked. In contrast, the constant rate assumptions of the SIR and SEIR models
are mathematically convenient as their rates of recovery and loss of latency can be
written just in terms of the current numbers of infectives and exposeds.

A mathematical trick [1, 10, 17] allows the inclusion of non-exponential distri-
butions within the compartmental framework. The infective class can be subdivided
into n stages, arranged in series. Newly infected individuals enter the first infec-
tive stage, pass through each in turn, and recover upon leaving the nth stage. It is
assumed that progression between stages occurs at constant per-capita rate, leading
to an exponential waiting time in each stage and allowing movement between stages
to be described by a linear system of differential equations. The stage approach
allows the modeler to retain the convenience of the differential equation approach,
albeit at the cost of an increased number of state variables and hence dimensionality
of the model.

In the simplest setting, the average waiting time (or equivalently the departure
rate) in each stage is assumed to be equal: the overall infectious period is then
described by the sum of n independent exponential distributions, i.e. infectious
periods are gamma distributed [10, 17] with shape parameter n, as illustrated in
Fig. 2. To allow comparison between models with different numbers of stages, the
average duration of infectiousness is often held fixed, meaning that the departure
rate is equal to nγ for each stage. In a similar way, a non-exponential latent period
can be described by the use of m exposed stages. A general form of the SEIR model,
which we dub the SEmInR model, is then given by

dS/dt = −βSI/N (9)

dE1/dt = βSI/N − mσ E1 (10)

dE2/dt = mσ E1 − mσ E2 (11)
...

dEm/dt = mσ Em−1 − mσ Em (12)

dI1/dt = mσ Em − nγ I1 (13)

dI2/dt = nγ I1 − nγ I2 (14)
...

dIn/dt = nγ In−1 − nγ In. (15)

Here I = I1 + I2 + · · · + In is the total number of infectives. We remark that
the SEmInR model has just two extra parameters compared to the SEIR model, and
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Fig. 2 Gamma distributed infectious periods. The graph illustrates the probability density function
(pdf) of gamma distributions with n = 1 (dotted curve), n = 2 (dot-dashed curve), n = 5 (dashed
curve) or n = 50 (solid curve) stages. In each case, the average duration of infection DI is two
days. The variances of the gamma distributions are given by DI

2/n. As discussed in the text, for
large n, the gamma distribution approaches a normal distribution: for comparison, the curve with
circles depicts a normal distribution with mean and variance equal to those of the n = 50 gamma
distribution

that if n = m = 1, the model reduces to the standard SEIR model. If either m
or n is large, then, by the Central Limit Theorem, the relevant gamma distribution
becomes approximately normal (see Fig. 2). In the limit m → ∞ or n → ∞, either
the exposed or infectious period distribution becomes of fixed duration.

More general distributions can be described using variations of the stage device,
for instance by having unequal movement rates or more complicated arrangements
of stages, such as stages in parallel as well as in series. Furthermore, the infec-
tiousness of different stages can be allowed to vary, giving a transmission term of
the form Σiβi S Ii/N . In some instances, the stages are identified with biologically-
defined different stages of an infection, as, for example, in the case of a number
of models for HIV [23]. But we emphasize that, in general, the stages are a
mathematical device and need not have any biological interpretation.

Linearization of the model (9)–(15) gives the growth rate (of both prevalence and
incidence) as the dominant root of the equation

γ R0

{
1 −
(

1 + r DI

n

)−n
}

= r

(
1 + r DE

m

)m

. (16)

This equation is equivalent to Equation (9) of Anderson and Watson [1], but
Lloyd [21] employed this version in which $R 0$ appears explicitly. Here R0 is
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again equal to βDI = β/γ . We remark that in the limit of m approaching infinity,
the term (1 + r DE/m)m approaches exp(r DE), and as n approaches infinity, the
term (1 + r DI/n)−n approaches exp(−r DI). Fixed duration latent and/or infectious
periods lead to the appearance of exponential terms and a transcendental equation
for r in terms of R0.

Decreasing the variance of the latent period distribution, i.e., increasing m while
keeping σ constant, reduces the initial growth rate. This effect can be seen in Fig. 3a,
comparing the initial growth of the SEIR model (solid curve) to those seen in the
corresponding SE5IR and SE50IR models (dotted and dashed curves, respectively).
The impact of adding extra stages decreases as the value of m increases: a larger
change is seen in the growth rate when m is changed from 1 to 5 than is seen when
m is increased from 5 to 50.

Reduction in the variance of the infectious period distribution, i.e. increasing
n while keeping γ fixed increases the initial growth rate of an outbreak (Fig. 3b).

4 A General Formulation

The stage approach provides a simple way to incorporate gamma-distributed waiting
times within the compartmental framework. More general descriptions of the time-
course of infection can be accounted for using a number of different approaches,
including partial differential equations, delay differential equations, integral equa-
tions and integro-differential equations [5–7, 11, 14–16, 18]. As an example, the
following integro-differential equation can be used to describe the number of
susceptibles

d S

dt
= −δ(t) − S(t)

N

∫ ∞

0

(
−d S

dt

) ∣∣∣
(t−τ )

A(τ ) dτ. (17)

Here A(τ ) is the infectivity kernel, i.e., the expected infectiousness of an individual
τ time units after infection. (In an entirely susceptible population, this would be the
rate at which such an individual gives rise to secondary infections.) The delta func-
tion depicts the infection of a single individual at the initial time. The integral that
appears in this equation depicts the force of infection experienced by susceptibles
at time t , while the incidence of infection, which we shall write as X (t), is equal to
−d S/dt . Notice that, as with all the models we consider in this chapter, we ignore
replenishment of the susceptible population.

A number of variants of this formulation appear in the literature. In some
instances, the contact rate, c, appears explicitly in Equation (17), with the infec-
tivity kernel being written as cA(τ ). Several authors write the infectivity kernel as
the product A(τ ) = A(τ )β(τ ), where A(τ ) is the probability that an individual is
infectious at time τ and β(τ ) is the expected infectiousness of an individual who
is infectious at that time. In this formulation, if the duration of the latent period is
given by the random variable TE and the duration of the infectious period by the
random variable TI , then A(τ ) = Pr(TE ≤ τ < TE + TI ).
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Fig. 3 Impact of distributional assumptions on epidemic behavior seen in SIR and SEIR-type
models. Panel (a) shows the impact of the latent period distribution in SEIR-type models. In each
case the infectious period is exponentially distributed. Solid curve: exponentially-distributed latent
period (SEIR model). Dotted and dashed curves: gamma-distributed latent period, with m = 5 and
m = 50 exposed stages (SE5IR and SE50IR models), respectively. Panel (b) depicts the effect of
various descriptions of the infectious period in SIR-type models (no latent period). Solid curve:
exponentially distributed infectious period (SIR model). Dotted curve: gamma-distributed infec-
tious period with n = 2 stages. Dot-dashed curve: gamma-distributed infectious period with n = 5
stages. Dashed curve: gamma-distributed infectious period with n = 50 stages. For both panels
(a) and (b), the average infectious period DI is taken to be 5 days, R0 is 5, and, where relevant, the
latent period has an average duration of DE = 2 days. At the initial time, the entire population of
N = 106 is susceptible to the infection, except for one individual who is taken to have just become
infectious. The insets focus on the early behavior, including the phase when the behavior can be
well approximated by a linear model

The compartmental models described in previous sections can be recast in terms
of an infectivity kernel. For the SIR model, the constant level of infectivity over an
exponentially distributed infectious period of average duration 1/γ gives

A(τ ) = βe−γ τ , (18)
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and for the corresponding SEIR model, with average duration of latency DE equal
to 1/σ , we have

A(τ ) =
{

β
σ

γ − σ

(
e−στ − e−γ τ

)
if σ �= γ

βγ τe−γ τ if σ = γ.
(19)

The basic reproductive number for this model is given by

R0 =
∫ ∞

0
A(τ ) dτ. (20)

During the early stages of an outbreak, S(t) ≈ N , and use of the approximation
S(t) = N gives the following linear integral equation for the incidence

X (t) = δ(t) +
∫ ∞

0
X (t − τ )A(τ ) dτ. (21)

Substitution of an exponentially growing form for the incidence, X (t) = X (0)ert ,
for t ≥ 0 gives the equation

1 =
∫ ∞

0
e−rτA(τ ) dτ, (22)

which can be solved for the rate r at which incidence grows. This equation is the
familiar Euler-Lotka formula from demographic theory [see, for example, 30].

The integral that appears in Equation (22) is the Laplace transform of the infec-
tivity kernel. Yan [34] derived a relationship between R0 and r for a general class of
infectivity kernels for which the random variables describing the latent and infec-
tious periods, TE and TI , are independent and under the assumption that secondary
infections arise at constant rate β over the duration of the infectious period. Assum-
ing that the Laplace transforms of the distributions of both TE and TI exist, and
writing them as LE (r ) and LI (r ), Yan obtained the following general result

R0 = DI

LE (r )L∗
I (r )

. (23)

Here, L∗
I (r ) = (1 − LI (r ))/r .

All of the relationships between R0 and r obtained from compartmental models
in the earlier sections of this chapter can be obtained as special cases of this result.
In particular, the earlier Equation (16) can be seen as a special case of Yan’s general
result and holds for general gamma distributed latent and infectious periods (i.e.,
with any positive shape parameters—not just integers).
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5 Comparing R0 Estimates Obtained Using Different Models

The relationships between R0 and r described in previous sections, obtained from
a number of SIR and SEIR-type models, are collected together in Table 1. It is
immediately clear that use of the SIR-based formula provides a lower estimate of
R0 than would be obtained using the SEIR-based formula [21, 25, 33]. Ignoring an
infection’s latent period leads to underestimates of R0, with the underestimate being
more serious for faster growth rates or longer durations of latency (e.g., compare
Tables 2, 3 and 4).

The origin of the underestimate is clear from the analysis and simulations pre-
sented earlier: given the same values for the transmission parameter and the average

Table 1 Relationships between the initial growth rate r and the basic reproductive number R0

obtained from various models

Model Formula

SIR R0 = 1 + r DI

SInR R0 = r DI
1 − (1 + r DI/n)−n

SI∞R R0 = r DI

1 − e−r DI

SEIR R0 = (1 + r DI) (1 + r DE)

SEI∞R R0 = r DI(1 + r DE)
1 − e−r DI

SEm IR R0 = (1 + r DI) (1 + r DE/m)m

SEm InR R0 = r DI (1 + r DE/m)m

1 − (1 + r DI/n)−n

SE∞IR R0 = (1 + r DI) er DE

SE∞I∞R R0 = r DIe
r DE

1 − e−r DI

Table 2 R0 and pc estimates obtained using various models when r = 0.04 day−1, DE = 3 days
and DI = 8 days. These parameters were chosen to be similar to those employed in [8] to describe
SARS

Model R0 estimate Control fraction pc

SIR 1.32 0.242
SI5R 1.20 0.167
SI∞R 1.17 0.144
SEIR 1.48 0.324
SEI∞R 1.31 0.236
SE5IR 1.49 0.327
SE5I5R 1.35 0.260
SE∞IR 1.49 0.328
SE∞I∞R 1.32 0.241
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Table 3 Impact of faster growth rate on R0 estimates. Here, r = 0.12 day−1, while DE = 3 days
and DI = 8 days take the same values as in the previous table

Model R0 estimate Control fraction pc

SIR 1.96 0.490
SI5R 1.64 0.391
SI∞R 1.56 0.357
SEIR 2.67 0.625
SEI∞R 2.12 0.527
SE5IR 2.77 0.640
SE5I5R 2.33 0.570
SE∞IR 2.81 0.644
SE∞I∞R 2.23 0.552

duration of infectiousness, the SEIR model would predict a lower growth rate than
the corresponding SIR model. Consequently, in order to achieve the same growth
rate in this forward problem setting, a higher transmission parameter, and hence R0,
must be used in the SEIR model than in the corresponding SIR model.

Larger estimates of the basic reproductive number are obtained when non-
exponential descriptions of the latent period distribution are used. Because the
function (1 + a/x)x is monotonic increasing for a > 0, increasing the number of
latent stages m (i.e., reducing the variance of the latent period distribution) increases
the estimate [21, 27, 33, 34], with the estimate that employs a fixed duration of
latency (i.e., m → ∞) providing an upper bound. On the other hand, lower estimates
of the basic reproductive number are obtained when the number of infectious stages
n is increased [21, 27, 33, 34], with the estimate obtained using a fixed duration of
infectiousness (i.e., n → ∞) being a lower bound.

Because estimates of R0 are often used to determine the severity of measures
needed to bring an outbreak under control, assumptions made about the timecourse
of infection can have important public health consequences [21, 33]. If the aim of
control is to bring the basic reproductive number below one, the transmissibility
of the infection must be reduced by a factor of pc = 1 − 1/R0. Here, we call pc

the control fraction. (In the context of mass vaccination, pc is called the critical

Table 4 Impact of longer average duration of latency on R0 estimates. Here, DE = 5 days, while
r = 0.12 day−1 and DI = 8 days, as in the previous table

Model R0 estimate Control fraction pc

SIR 1.96 0.490
SInR 1.64 0.391
SI∞R 1.56 0.357
SEIR 3.14 0.681
SEI∞R 2.49 0.598
SEm IR 3.45 0.710
SEm InR 2.89 0.655
SE∞IR 3.57 0.720
SE∞I∞R 2.83 0.647
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vaccination fraction.) As we have seen, use of SIR models underestimates the basic
reproductive number and hence leads to lower estimates of pc compared to those
obtained using SEIR models. This could be a serious problem as it leads to an
overly optimistic prediction of the strength of control needed to curtail an outbreak:
a control measure that, on the basis of the incorrect model, is predicted to succeed
could, instead, be doomed to failure [21].

We first illustrate these results by providing a few examples using a growth rate
and durations of latency and infectiousness based roughly on a SARS modeling
study of Chowell et al. [8]. (The study of Chowell et al. accounted for treatment
and isolation, using a more complex model than those employed here, so direct
comparisons cannot be made.) Table 2 shows estimates obtained for an observed
growth rate of 0.04 per day, assuming a three day average duration of latency and an
eight day average duration of infectiousness. We imagine that details of how latent
and infectious periods are distributed about their means are unknown, and so present
estimates based on a number of models. This provides an indication of the degree
of uncertainty that arises from incomplete knowledge of these distributions. (Here
we ignore the additional complication that the estimate of r would also have some
uncertainty.) For this example, comparing the SIR and SEIR-based estimates, we
see that ignoring the latent period leads to R0 being underestimated by about 10%.
This translates into a 25% underestimate of the control fraction.

Interestingly, for this set of parameters, the distribution of the latent period (pro-
vided that one is used in the first place) has little impact on the estimates, while
the infectious period distribution has a more noticeable effect. In this case the latter
effect is sufficiently large to offset the differences introduced by ignoring a latent
period: the estimates obtained using the SIR and the SE∞I∞R models are almost
identical.

For a more rapidly growing outbreak, in which r = 0.12 day−1 is three times
larger than its previous value, the SIR model underestimates R0 by a larger amount,
roughly 25%, compared to the SEIR estimate (Table 3). This corresponds to a 22%
underestimate of the control fraction. We remark that while this underestimate is
slightly smaller in percentage terms than that seen under the previous set of param-
eters, it is larger in absolute terms. Also, given that the required level of control is
higher, the increase in effectiveness needed to go from the SIR-based estimate of pc

to the SEIR-based estimate may be much more difficult to achieve. For this set of
parameters, the form of the latent period distribution has a more noticeable impact.

If the infection is both more rapidly growing and has a longer duration of latency
the underestimate of R0 is more severe. In the example of Table 4, in which the
average duration of latency has been raised from 3 to 5 days, use of the SIR model
underestimates R0 by roughly 38% of the SEIR-based estimate. The two estimates
of the control fraction are 0.490 (SIR) and 0.681 (SEIR).

Figure 4 shows how estimates of R0 obtained using the SEmInR model depend
in turn on each of the quantities DE, DI, m, n and r for a situation corresponding to
Table 4. We take DE = 5 days, DI = 8 days, r = 0.12 day −1, m = 5 and n = 5
as a baseline, and vary just one of these at a time. As discussed above, the estimate
of R0 increases with m, DE, DI and r , but decreases with n. We also see that the
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Fig. 4 Sensitivity of the R0 estimate to variations in single parameter values or the initial growth
rate. One of five quantities is varied in turn: Panel (a) DE (solid curve) or DI (dashed curve); Panel
(b) m (solid curve) or n (dashed curve); Panel (c) r . The four other values are taken from the
baseline set of DE = 5 days, DI = 8 days, m = 5, n = 5, and r = 0.12 day −1

sensitivity of the estimate varies with these parameters, for instance, the R0 estimate
is less sensitive to m for larger values of m.

A dramatic example of the potential for the underestimation of R0 was provided
by Nowak et al. [25] in a within-host setting that can be modeled using virus dynam-
ics models that are directly analogous to the epidemiological models considered
here. The initial growth rate of simian immunodeficiency virus (SIV) in one par-
ticular animal in an experimental infection study was found to be 2.2 day−1 and
the average duration of infectiousness (of SIV infected cells) was 1.35 days. Use
of the SIR model gave an estimate of R0 = 4.0, the SEIR model, assuming a one
day latent period (i.e., the delay between a cell becoming infected and becoming
infectious), gave R0 = 13, while the SE∞IR model gave R0 = 36. We remark on the
large impact of the distribution of the latent period in this instance. In terms of con-
trol fractions, the three models predict values of 0.75 (SIR), 0.92 (SEIR) and 0.97
(SE∞IR). While there may be hope in achieving a 75% reduction in transmissibility,
a 92 or 97% reduction would be much harder to achieve. In this case, use of the SIR
model gives a wildly optimistic picture of the effectiveness required of a control
measure.
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If the latent period in this within-host example was instead assumed to be 0.5
days, the effect would be reduced, with the SEIR and SE∞IR-based estimates of
R0 falling to 8.3 and 12, respectively. These values are still considerably larger than
the SIR-based estimate of 4.0, and the estimate is still highly sensitive to the distri-
bution of the latent period. The corresponding control fractions are 0.88 and 0.92,
respectively.

6 Sensitivity Analysis

The numerical examples presented above give an idea of the dependency of R0

estimates on parameter values in particular settings, but a more systematic explo-
ration can be achieved using sensitivity analysis. It is straightforward to calculate
the partial derivatives of the estimated value of R0 as provided by the SEmInR model
(i.e., using Equation 16) with respect to the parameters DE, DI, m, n, and the initial
growth rate r . The elasticity Ex , which approximates the fractional change in the R0

estimate that results from a unit fractional change in parameter x (while keeping all
other parameters constant), is given by Ex = (x/R0) · ∂ R0/∂x . The elasticities for
the quantities of interest are

EDE = r DE

1 + r DE/m
(24)

EDI = 1 − r DI

(1 + r DI/n)
(
(1 + r DI/n)n − 1

) (25)

Em = m ln

(
1 + r DE

m

)
− r DE

1 + r DE/m
(26)

En = 1

(1 + r DI/n)n − 1

(
−n ln (1 + r DI/n) + r DI

1 + r DI/n

)
(27)

Er = 1 + r DE

1 + r DE/m
− r DI

(1 + r DI/n)
(
(1 + r DI/n)n − 1

) . (28)

We remark that if the curves that appear in Fig. 4 were replotted on log-log axes,
these elasticities would describe the slopes of these new graphs.

The signs of the elasticities confirm the earlier discussion of how the estimate
of R0 varies as parameter values are changed. Clearly EDE is positive, meaning
that increases in DE lead to larger estimates of R0. EDI is also seen to be positive,
since the second term in Equation (25) is smaller than one for positive values of
the parameters r , DI and n: increases in DI again lead to larger estimates of R0.
Em is seen to be positive when m, r and DE are positive because the function
m ln(1 + x/m) − x/(1 + x/m) is monotonic increasing in x and takes the value 0
when x equals zero. A similar argument shows that En is negative. Finally, Er equals
the sum of EDE and EDI and so is positive, and is greater than either EDE or EDI .
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A little algebra shows that EDE is an increasing function of r , DE or m, i.e., the
elasticity of the R0 estimate with respect to DE increases with these parameters. EDI

is an increasing function of r or DI, but parameter sets can be found for which it is
non-monotonic as n changes. Em increases with r or DE, but can be non-monotonic
as m changes. En can be non-monotonic as r or DI changes. As before, Er inherits
the properties of EDE and EDI , and so increases with DE, DI, m or r , but need not
be a monotonic function of n.

For the parameters of Table 2 and when m = n = 1 we find that the elasticities
are given by EDE = 0.107, EDI = 0.242, Em = 0.006, En = −0.110, and Er =
0.350. If, instead, we take m = n = 5 the elasticities are EDE = 0.117, EDI =
0.173, Em = 0.001, En = −0.026, and Er = 0.290. In both cases, the R0 estimate
is more sensitive to changes in DI than to changes in DE, and here we see that
sensitivities to m and n are of smaller magnitude for larger values of m and n, while
the sensitivity to DE increases with increasing m and the sensitivity to DI decreases
with increasing n.

Whether the estimate is more sensitive to changes in DE or DI (or to m or n)
depends on the values of the parameters. For example, if the parameters of Table
4 are taken, and m = n = 1 is assumed, the elasticities are EDE = 0.375, EDI =
0.490, Em = 0.095, En = −0.191, and Er = 0.865. If, instead, we assumed m =
n = 5, the estimate of R0 would be more sensitive to DE than to DI (EDE = 0.536
and EDI = 0.427), and if we took m = 1 and n = 5, the estimate would be more
sensitive to m than to n (Em = 0.095 and En = −0.052).

One important question that the elasticities discussed in this section do not
address is the impact of neglecting the latent period entirely. Having said this, they
are useful in understanding how uncertainties in the average duration of the latent or
infectious period, the dispersions of these distributions, as described by m or n, or
the initial growth rate impact the estimation of R0 in the SEmInR model framework.

7 Discussion

The importance of non-exponential infectious periods and time-varying infectious-
ness has long been appreciated for chronic infections, such as HIV, for which a
constant recovery rate assumption is clearly untenable [5–7, 16, 23, 24]. Even in
the setting of models of acute infections, there is a surprisingly long history of the
use of more complex models: Kermack and McKendrick’s groundbreaking paper
of 1927 [18] contains an integral equation formulation along the lines of Equation
(17), and Bailey [3] used the stage approach and the resulting SEmInR model. The
importance of distributional assumptions has typically been viewed in terms of their
impact on the behavior of a model for a given set of parameters (i.e., the forward
problem): effects such as the slower growth of epidemics for infections with latency
have long been appreciated.

The impact of distributional assumptions on the inverse problem, (i.e., the esti-
mation of parameters given the observed behavior), however, appears to have only
recently become fully appreciated. Nowak et al. [25] showed that the SIR-based
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estimates of the within-host basic reproductive number of SIV (simian immunod-
eficiency virus) severely underestimated R0 when compared to estimates obtained
using more realistic SEIR models. Little et al. [20] carried out a similar analysis in
the setting of HIV infection. Much of the theory and results discussed in this chap-
ter were laid out by Lloyd [21], in the setting of within-host infections, although,
because of the obvious correspondence between within-host and between-host mod-
els, the application to estimation in the epidemiological setting was highlighted [see
also the discussion of 22]. Wearing et al. [33] further illustrated these results in
an epidemiological setting, and broadened consideration to include estimation of
R0 based on data from the entire outbreak, as discussed below. A complementary
approach was taken by Wallinga and Lipsitch [31] and Roberts and Heesterbeek
[27], who examined the relationship between R0 and r in terms of the generation
interval of the infection (i.e., the time between an individual becoming infected and
the secondary infections that they cause). Both of these studies considered gamma
distributed latent and infectious periods, including the exponential and fixed dura-
tion cases, giving equivalent results to those discussed here. Additional families
of distributions were also considered, including trapezoidal infectivity kernels [27]
and normally distributed generation intervals [31]. Yan [34] provided a comprehen-
sive analysis that encompassed and unified most of these earlier studies, deriving
general results in terms of Laplace transforms of the latent and infectious period
distributions.

The results presented here demonstrate that estimates of the basic reproductive
number obtained from the initial growth rate of a disease outbreak can be sensitive
to the details of the timing of secondary infection events (i.e., to the distribution
of infectious and latent periods). Such details, while clearly important, are often
difficult to obtain. Data that identifies when an individual was exposed to infection
and when their secondary transmissions occurred, such as family-based transmis-
sion studies or contact tracing data—even if incomplete—can be highly informative
in this regard [2, 4, 12, 13]. It is important to realize that models are often framed in
terms of transmission status, e.g. whether an individual is infectious, while data may
reflect disease status, e.g. whether an individual is symptomatic or not. This distinc-
tion is important in the interpretation of the most commonly available distributional
data, namely the incubation period distribution [28], because the incubation period
of an infection may not, and often does not, correspond to its latent period [see, for
example, 29].

In this chapter we only considered the estimation of R0 from initial growth data,
but similar results are obtained if models are instead fitted to data obtained over the
entirety of an outbreak [33]. This makes sense given the observation that distribu-
tional assumptions affect not only the initial growth rate but the whole time course
of an outbreak in the forward problem (see Figs. 1 and 3). Whole-outbreak data is
considerably more informative than initial growth data, for instance Wearing et al.
[33] used a least-squares approach to estimate β, DE and DI as well as the shape
parameters m and n of the gamma distributions describing latency and infectious-
ness. Initial growth rate data, on the other hand, does not even allow β and γ to
be independently estimated. Capaldi et al. (manuscript in preparation) examine the
types of data that allow for the estimation of different parameters in more detail.
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Wearing et al. [33] also make the important observation that different estimates of
R0 can, in some instances, be obtained if initial data is used rather than data from an
entire outbreak [see also 9].

If detailed information on the distribution of latent and infectious periods is
absent, caution should be taken in basing an estimate of R0 by fitting a single
model. The use of a number of models can provide bounds on the estimate, giving
an indication of the uncertainty arising from our incomplete knowledge of the trans-
mission process. Any model-based uncertainty is in addition to that which arises
from noise in the data—an issue that we have not discussed in this chapter—and
so the most informative uncertainty estimate would account for both sources of
error. (Sensitivity calculations, such as those discussed above, can be informative
in this regard.) In some instances, however, model-based uncertainty may place
a much greater limit on our ability to estimate parameters. As in the within-host
example of Nowak et al. [25], this uncertainty can be so large as to render the esti-
mates almost uninformative—but at least the deficiency is exposed by the approach
advocated here.
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