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Abstract

The major role played by demographic stochasticity in determining the dynamics and persistence of childhood diseases, such as

measles, chickenpox and pertussis, has long been realized. Techniques which can be used to estimate the magnitude of this stochastic

effect are of clear importance. In this study, we assess and compare the use of two moment closure approximations to estimate the

variability seen about the average behavior of stochastic models for the recurrent epidemics seen in childhood diseases. The

performance of the approximations are assessed using analytic techniques available for the simplest epidemiological model and

using numerical simulations in more complex settings. We also present epidemiologically important extensions of previous work,

considering variability in the SEIR model and in situations for which there is seasonal variation in disease transmission. Important

implications of stochastic effects for the dynamics of childhood diseases are highlighted, including serious deficiencies of deter-

ministic descriptions of dynamical behavior.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Although deterministic models have contributed
much to our understanding of the biological processes
which underlie the spread of disease (see Dietz and
Schenzle, 1985; Anderson and May, 1991; Diekmann
and Heesterbeek, 2000, for reviews of the field), the
importance of random effects in determining population-
level patterns of disease incidence and persistence has
long been realized (see, for instance, Bartlett, 1956, 1957,
1960a, b; Black, 1966; Anderson and May, 1991;
Grenfell et al., 1995a; Bolker and Grenfell, 1995, 1996;
Keeling and Grenfell, 1997; N(asell, 1999; Andersson and
Britton, 2000; Keeling et al., 2001; Rohani et al., 2002).
The epidemiological impact of stochasticity has received
most attention within the context of childhood diseases,
most notably measles, on which this study is focused.
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Stochasticity leads to two fundamental differences
between the behavior of deterministic and stochastic
models. Firstly, random effects give rise to variability in
the course of epidemics (Isham, 1991): repeated simula-
tion of a stochastic process starting with identical initial
conditions leads to a collection of different realizations
of the process, in contrast to similar repeated simulation
of a deterministic model. Secondly, when disease
incidence is low, the chain of disease transmission can
be interrupted, leading to (at least local) extinction, or
fadeout, of the disease (Bartlett 1956, 1957, 1960a, b).
Fadeout is most likely to occur in the period immedi-
ately following a major epidemic (the so-called ‘inter-
epidemic trough’). An important observation is that
deterministic models cannot reproduce such effects: the
ability of populations to recover from very low levels is a
well-known weakness of many deterministic models
(Engbert and Drepper, 1994; Bolker and Grenfell,
1995).
Knowledge of the variability between epidemic

realizations is of direct interest when making predictions
about the future course of an epidemic as it gives
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information about the likely accuracy of any forecast
made. Variability is also informative regarding disease
persistence: extinction is more likely to occur when high
levels of variability are observed because individual
realizations wander further away from their mean and
so are more likely to come close to zero.
Estimation of variability by examination of a collec-

tion of model realizations is straightforward, although
this can be quite expensive in terms of computer time, a
problem exacerbated when large population sizes are
considered. An alternative way to understand the
variability between realizations involves the derivation
of differential equations for the moments (the mean,
standard deviation, skewness, and so on) of the
distribution of the states of the system (Whittle 1957;
Isham, 1991). The difficulty in applying this approach,
in general, is that nonlinearities in the equations
governing the behavior of the system lead to coupling
between the equations for moments of different orders:
for instance, the equations for the first-order moments
may involve second-order moments, those describing
the second-order moments may involve third-order
moments, and so on.
Use of moment equations requires the deployment of

an approximation technique—a moment closure ap-
proximation—which can truncate this set of equations
at some order. Analogous moment closure techniques
are also used in other contexts, such as spatial systems,
when a finite set of dynamical equations is desired to
describe an infinite (or very high) dimensional system
(Bolker and Pacala, 1997; Keeling and Grenfell, 1997).
The simplest moment closure methods assume that

the distribution of states follows some given distribution
and then uses the known relationship between the
moments of that distribution to truncate the set of
moment equations. For instance, Whittle’s multivariate
normal (MVN) approximation (Whittle, 1957) assumes
that the distribution is multivariate normal. As the
third-order central moments of a MVN vanish, closure
of the set of moment equations is achieved by setting
third-order central moments to zero. The MVN has
previously been used within an epidemiological context
by Isham (1991), although the particular setting
concerned an epidemic, rather than endemic, situation.
A particularly fruitful application of related moment
closure methods within the epidemiological literature
has been within the context of macroparasite infections
(see, for instance, Grenfell et al., 1995b).
Although the MVN approximation has been the one

most widely used in the literature, and as such will be
our main interest here, we shall see below that the
resulting moment equations exhibit what appear to be
important failings when population sizes are ‘small’. In
an attempt to provide an improved approximation in
such situations, an alternative moment closure techni-
que, which assumes that the distribution of states
follows a multivariate lognormal distribution, has been
suggested (Keeling, 2000a, b).
We assess the use of these two moment closure

approximations to estimate the impact of demographic
stochasticity in models for recurrent epidemics in
reasonably large populations. In the simplest case of a
non-seasonal SIR model, the performance of the
approximations can be compared against existing
analytic expressions for the variability seen about the
endemic equilibrium of the model. In more complex, but
epidemiologically more realistic, model settings—for
which there has been little previous systematic con-
sideration of issues concerning variability—the behavior
of the approximations is compared with results obtained
from numerical simulation of the stochastic model. We
explore in some detail the impact of including an
exposed, but not yet infectious, class of individuals
(examining the so-called SEIR model) and of the
inclusion of seasonal variations in the transmission
parameter.
This paper is organized as follows: Section 2 briefly

outlines the biological background of the models under
consideration and develops deterministic and stochastic
formulations of the models. Section 3 discusses the
derivation of moment equations to describe variability
in stochastic formulations of the models, focusing on
deployment of the multivariate normal approximation.
Section 4 examines the performance of the moment
equations in the well-known case of the non-seasonal
SIR model. Section 5 considers the behavior of
seasonally forced models, and highlights the increased
importance of demographic stochasticity in such mod-
els. Appendix A briefly summarizes the development of
moment equations based on the lognormal assumption.
Appendix B extends the MVN moment equations to
describe the SEIR model, and illustrates how the
inclusion of an exposed class of individuals reduces
variability in the model. Appendix C discusses dynami-
cal differences between the behaviors of the determinis-
tic equations and the MVN moment equations in the
seasonally forced model.
2. Deterministic and stochastic model formulations

The SIR model and its variants have been central in
the mathematical study of epidemics (Kermack and
McKendrick, 1927; Bartlett, 1960b; Anderson and May,
1991). The population is divided into three classes:
susceptible, infectious and recovered, and the numbers
of individuals in these classes are written as S; I and R;
respectively. Making the standard assumptions for an
SIR model describing childhood diseases—in which it is
assumed that the infection is non-fatal and confers
permanent immunity upon recovery—in a well-mixed
population of constant size, N (see, for instance,
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Table 1

Transitions between classes in the SIR model. Here, the per-capita birth and death rates are written as m; hence the average lifespan of individuals, L;

equals 1=m: The transmission parameter, b; equals a=N: (We absorb the N-dependence of the transmission parameter into b in this way as it simplifies
notation somewhat.) The average duration of infectiousness, D; is 1=g

Event Transition Rate at which Probability of transition

event occurs in time interval ½t; t þ dt�

Birth S-S þ 1 mN mN dt

Susceptible death S-S � 1 mS mS dt

Infection S-S � 1; I-I þ 1 bSI bSI dt

Recovery I-I � 1 gI gI dt

Infectious death I-I � 1 mI mI dt
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Anderson and May, 1991; Diekmann and Heesterbeek,
2000), the movements of individuals between the classes
are governed by the few simple rules, and accompanying
parameters, listed in Table 1.
The deterministic SIR model, which treats the

numbers of susceptibles, infecteds and recovereds as
continuously varying quantities, can then be written as

dS

dt
¼ mN � mS � bSI ; ð1Þ

dI

dt
¼ bSI � mI � gI : ð2Þ

Notice that an equation for the recovered class does not
appear in the above set of differential equations as the
assumption of a constant population size (or, equiva-
lently, the assumed equality of birth and death rates)
implies that R ¼ N � S � I : It is also easy to see (by, for
instance, rewriting Eqs. (1)–(2) in terms of the fractions
of the population which are in each of the three classes,
and noting the N-dependence of the parameter b
discussed in Table 1) that the behavior of the
deterministic model does not depend on the population
size.
An alternative, stochastic, formulation implicitly

recognizes that the population is made up of individuals,
and that transitions between classes are random events
(Bartlett, 1956, 1960b; Olsen et al., 1988). The rates at
which various transitions occur can be reinterpreted to
calculate the probabilities of each event occurring in an
infinitesimal time interval dt: For instance, the prob-
ability of a birth occurring in the time interval ½t; t þ dt�
is mN dt: Realizations of this stochastic model can be
generated by computer using standard Monte-Carlo
techniques (Bartlett, 1957, 1960b; Renshaw, 1991).
As mentioned above, the stochastic formulation can

exhibit disease fadeout: the number of infectives can fall
to zero, as happens if there is a single infected individual
who recovers or dies before passing on the disease.
Further disease outbreaks cannot occur without the
reintroduction of the infection by immigration of an
infective individual from elsewhere. Examination of
disease incidence records shows that disease fadeout
followed by reintroduction is a frequent occurrence in
the real world (Bartlett, 1956, 1957, 1960a, b): models
which are used to match actual disease patterns must
take immigration into account. The introduction of
immigration, however, has non-trivial implications for
the dynamical patterns of disease incidence. If fadeouts
are very common, then the timing and size of epidemics
depends heavily on the immigration term, as witnessed
by the sensitive dependence of dynamics to the level of
immigration in the deterministic model (Engbert and
Drepper, 1994; Bolker and Grenfell, 1995). As a
consequence, we do not include immigration here,
deferring discussion of its effects to a future study.
3. Derivation of moment equations

If the probability that the number of susceptibles and
infecteds equals ðs; iÞ at time t is written ptðs; iÞ; then the
Kolmogorov forward equations (Bartlett 1960b; Feller,
1968) (also known as the master equations) of the
system can be obtained in the standard way: relate
ptþdtðs; iÞ to pt by considering the possible transitions
which could occur in the time interval ½t; t þ dt� and let
dt tend to zero, giving

dptðs; iÞ
dt

¼ mNptðs � 1; iÞ þ mðs þ 1Þptðs þ 1; iÞ

þ bðs þ 1Þði � 1Þptðs þ 1; i � 1Þ
þ ðgþ mÞði þ 1Þptðs; i þ 1Þ
� fmN þ ms þ bsi þ ðgþ mÞigptðs; iÞ: ð3Þ

(Notice that, since s and i must be non-negative, ptðs; iÞ
is defined to be zero if either s or i is negative.)
For small population sizes, this set of coupled

differential equations can be integrated numerically to
study the evolution of the probability distribution of S

and I (Jacquez and Simon, 1993), but this quickly
becomes impractical as the population size increases.
The system of forward Eqs. (3) can be used to derive

formulae for the rates of change of the expected
numbers of susceptibles and infectives, EðSÞ and EðIÞ;
and higher moments such as the variances of the number
of susceptibles and infectives and the covariance
between the susceptible and infective numbers. The
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most convenient approach for our purposes involves the
use of the moment generating function (MGF),
Mðy1; y2; tÞ; defined as

Mðy; tÞ ¼ Eðey1Sþy2I Þ: ð4Þ
The equation for the time evolution of the MGF is
derived by multiplying Eq. (3) by expðy1s þ y2iÞ and
summing over s and i; giving

@M

@t
¼ bðey2�y1 � 1Þ @2M

@y1@y2
þ mðe�y1 � 1Þ @M

@y1

þ ðgþ mÞðe�y2 � 1Þ @M

@y2
þ mNðey1 � 1ÞM: ð5Þ

Since the moment generating function can be written
as

Mðy1; y2Þ ¼
XN
k¼0

1

k!

Xk

j¼0

k

j

� �
yj
1y

k�j
2 EðSjIk�jÞ; ð6Þ

the expectation of SmIn can be determined from the
appropriate coefficient of ym

1 y
n
2 in the expansion of M:

Hence, by expanding Eq. (5) in powers of y1 and y2 and
equating coefficients, differential equations for the time
evolution of the ordinary moments can be derived
(Lloyd, 1996; Matis and Kiffe, 1999).
In order to derive equations for the variances and

covariances, it is more convenient to consider the
cumulant generating function, Kðy1; y2; tÞ; defined as
the logarithm of the MGF, Kðy1; y2; tÞ ¼
log ðMðy1; y2; tÞÞ; whose coefficients in the series expan-
sion corresponding to (6) are known as the cumulants.
The first two cumulants equal the mean and variance
and the third cumulant is proportional to the skewness.
Eq. (5) can easily be transformed into an equation for

the time derivative of K ; giving

@K

@t
¼ bðey2�y1 � 1Þ @2K

@y1@y2
þ @K

@y1

@K

@y2

� �

þ mðe�y1 � 1Þ @K

@y1

þ ðgþ mÞðe�y2 � 1Þ @K

@y2
þ mNðey1 � 1Þ: ð7Þ

Expansion of Eq. (7) gives the following equations for
the time evolution of the moments of orders one and
two:

dEðSÞ
dt

¼ mN � mEðSÞ � bEðSIÞ; ð8Þ

dEðIÞ
dt

¼ bEðSIÞ � ðgþ mÞEðIÞ; ð9Þ

d VarðSÞ
dt

¼ mN þ mfEðSÞ � 2VarðSÞg þ bfEðSIÞ

� 2EðIÞVarðSÞ
� 2EðSÞCovðS; IÞ � 2TSSIg; ð10Þ
d VarðIÞ
dt

¼ðgþ mÞfEðIÞ � 2VarðIÞg þ bfEðSIÞ

þ 2EðSÞVarðIÞ
þ 2EðIÞCovðS; IÞ þ 2TSIIg; ð11Þ

dCovðS; IÞ
dt

¼ � ðgþ 2mÞCovðS; IÞ � bfEðSIÞ

� EðIÞ½VarðSÞ � CovðS; IÞ�
þ EðSÞ½VarðIÞ � CovðS; IÞ�
� TSSI þ TSIIg; ð12Þ

where TSSI is the third central moment EðfS �
EðSÞg2fI � EðIÞgÞ; and TSII is defined similarly.
Notice that, as mentioned earlier, the equations for

the first-order moments are not closed as they involve
the second-order term EðSIÞ: It is interesting to note
that the deterministic system consists of Eqs. (8) and (9)
with EðSÞ replaced by S; EðIÞ replaced by I and EðSIÞ
replaced by SI : This last replacement is an approxima-
tion since EðSIÞ ¼ EðSÞEðIÞ þ CovðS; IÞ: the determi-
nistic equations are not an exact representation of the
mean behavior of the system for finite populations. Put
another way, we could say that the deterministic model
is obtained as the result of the simplest moment closure
technique applied to (8) and (9), namely one in which
the second-order central moments are set equal to zero.
The equations for the second-order moments are seen

to contain terms which involve the third central
moments. Although this expansion could be taken to
higher and higher orders, yielding an infinite set of
equations for all the moments of the system (cf. Matis
and Kiffe, 1999), we only wish to consider terms of first
and second order. Moment closure in our case
corresponds to approximating the third-order terms,
TSSI and TSII ; by terms involving first- and second-order
moments.
Application of the MVN to Eqs. (8)–(12) is trivial:

since third-order central moments vanish for a multi-
variate normal distribution, one simply sets TSSI ¼
TSII ¼ 0: The use of this approximation can be justified
by the results of Kurtz (1970, 1971), which show that the
stochastic process can be approximated by a Gaussian
diffusion process in the large N limit.
The lognormal approximation (Keeling, 2000a, b)

also provides expressions for TSSI and TSII in terms of
lower order moments, and so can be deployed by
making the appropriate substitutions. These expres-
sions, however, are somewhat more complex, and it
turns out that the approximation is most succinctly
described using so-called multiplicative moments (see
Keeling, 2000a, b). A brief derivation of these moment
equations (hereafter referred to as the MM equations)
appears in Appendix A.
In the case of the MVN, non-negativity of population

numbers imposes constraints on the mean and variance
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of a normal distribution which is attempting to
approximate the distribution of the states of the system:
clearly, a normal distribution cannot be a good
approximation if its standard deviation is sizeable
compared to its mean. (As a concrete example, N(asell
(1999) takes the ratio of the standard deviation to the
mean being less than one third as an indication that the
distribution of states is likely to be well-approximated
by a MVN distribution.) In contrast, population
numbers for a lognormal distribution are guaranteed
to be positive and so it might be hoped that it could
provide a better approximation when population sizes
are small.

3.1. An aside on extinction and the stochastic process

conditioned on non-extinction

In the absence of immigration, the ultimate fate of
each realization of the stochastic model is that the
infection will go extinct. The expected time until
extinction may, however, be very long indeed when the
population size is large: theoretical results indicate that
this quantity, for large N; increases exponentially with
N: It is possible to relate quantities such as the expected
time until extinction to the level of variability seen in the
model (N(asell, 1996, 1999, 2002; Andersson and Britton,
2000), but, since the main focus of this paper is
variability itself, we do not pursue this further here.
By conditioning on non-extinction of the infection,

one can define a new stochastic process that is related,
via the extinction process, to the (unconditioned)
process governing the system. The relationship between
the conditioned and unconditioned processes is an
important one and has been studied quite extensively
for certain simple epidemic models (see, for instance,
Jacquez and Simon, 1993; N(asell, 1996), but somewhat
less so for multivariate models of the type considered
here (see, however, N(asell, 1999).
When comparing the behavior of either the determi-

nistic model or the moment equations to that of a
collection of model realizations, it is natural to ask
whether one should consider the original, uncondi-
tioned, process or the process conditioned on non-
extinction. Although the Kolmogorov Eqs. (3) (and
hence the resulting moment Eqs. (8)–(12)) describe the
unconditioned stochastic process, the moment closure
techniques that lead to the closed sets of moment
equations—or, indeed, the deterministic model—take
no account of extinction. Accordingly, we argue that it
is more natural to compare the behavior of these
equations with numerical estimates of moments ob-
tained by conditioning on non-extinction (cf. Jacquez
and Simon, 1993). (As a trivial example, the mean
number of infectives in the unconditioned process will
tend to zero over a sufficiently long time interval, but we
would not, in general, expect to see such behavior in the
deterministic model or in the MVN or MM moment
equations.) Of course, any differences between the
unconditioned and conditioned processes will be small
if the population size is sufficiently large that extinctions
are infrequent over the timescale on which the simula-
tions are carried out.
We remark that the Kolmogorov forward equations

for the process conditioned on non-extinction of the
infection can be derived quite easily: see Section 2.3, in
particular equation 2.6, of N(asell (1999), and Sections
II.A.5 and III.B.3 of Jacquez and Simon (1993). These
equations differ from (3) in an important way: each one
includes an additional term arising from the need to
account for the rate at which the infection goes extinct.
This extra term complicates the analysis of the resulting
set of equations considerably: this is not surprising since
the rate at which extinctions occur is not, in general, a
quantity for which an exact expression is available. As
a consequence, the usefulness of these equations for the
problem at hand here is far from clear.
4. Variability in the non-seasonal model

For epidemiologically realistic parameter values, the
deterministic model exhibits damped oscillations to a
stable endemic equilibrium (Hethcote, 1974; Anderson
and May, 1991). It can easily be shown (Anderson and
May, 1991) that these oscillations have period approxi-
mately equal to 2pðADÞ1=2 and damping time approxi-
mately equal to 2A: Here D is the average duration of
infectiousness and A is the average age at infection in the
endemic state. A is approximately equal to the average
lifespan, L; divided by the basic reproductive number,
R0; with the latter being given by the expression
bN=ðmþ gÞ: (Notice that R0 is independent of popula-
tion size since b was assumed to be proportional to the
reciprocal of N: see Table 1. Also notice that our
restriction to childhood diseases separates the timescales
between the average duration of infection (D is on the
order of days), the average age at infection (A is on the
order of a few years) and the average lifespan (L is on
the order of tens of years).)
In the stochastic model, random effects prevent the

system from settling down into equilibrium (Bartlett,
1956, 1960b; N(asell, 1999; Aparicio and Solari, 2001):
individual realizations continue to oscillate around the
endemic level predicted by the deterministic model. The
moment equations capture this behavior and settle into
an endemic state, with equilibrium values of S and I

close to those predicted by the deterministic model. The
equilibrium values of the second-order moments show
that the numbers of infectives seen in realizations of the
model can vary considerably about their mean level
(Fig. 1).
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In the particular case of the non-seasonal SIR model,
the level of variability estimated by the moment
equations can be compared to results obtained using
one of several analytic approximation techniques. If the
fluctuations of S and I about their mean level are
assumed to be small, an analytic expression for
variability can be obtained using a linear approximation
of the governing equations (Bartlett, 1960b; N(asell,
1999, 2002). For the diseases under consideration, it can
be shown (Schenzle and Dietz, 1987; Lloyd, 1996;
N(asell, 1999, 2002) that the coefficient of variation of
the number of infectives (i.e. the standard deviation
expressed as a fraction of the mean) can, to a very good
approximation, be written as

cv ¼ L

D
ffiffiffiffiffiffiffiffiffiffi
R0N

p : ð13Þ

Since this expression is obtained using a linearization of
the governing equations, it should only be expected to
provide a good description of variability when N is
large. Notice that linearization guarantees that (13)
scales as N1=2 for all values of N:
The form of (13) is familiar from the study of

demographic stochasticity in many simple population
models (May, 1973), and states that as the population
size increases, variability decreases and so the determi-
nistic equations become a better and better description
of the system (cf. the results of Kurtz, 1970, 1971). The
factor L=D appearing in the analytic approximation (13)
highlights the reason why demographic stochasticity can
6.0 6.5 7.0 7.5 8.0 8.5
log10 N

0.1

1

0.5

0.05

0.25

C
V

Fig. 1. Coefficient of variation of the fluctuations in the numbers of

infectives for various population sizes (note the logarithmic scales).

The crosses represent numerically obtained estimates, based on

averages taken over one thousand realizations of the model. The

heavy unbroken line represents the estimate based on the MVN

moment equations. The light unbroken line with circles denotes the

estimate based on the MM equations. The broken line shows the

estimate based on Bartlett’s stochastic linearization approximation.

Parameter values are as follows: m ¼ 1=70 year�1; g ¼ 50 year�1;
b ¼ 750=N year�1:
play such an important role in the dynamics of many
childhood diseases: variability is large because of the
separation of timescales between the infection process
(occurring over days) and the demographic process
(replacement of susceptibles, which occur over years).
Also notice that variability about the endemic equili-
brium decreases as R0 increases: this effect can be
explained by noting that oscillations about the endemic
equilibrium are more strongly damped for larger values
of R0 (Aparicio and Solari, 2001, see also Lloyd, 2001b).
Fig. 1 compares the variability estimated by the MVN

equations, the MM equations, Bartlett’s stochastic
linearization technique (13), and the variability observed
in numerical simulations of the model. (Recall that the
numerically obtained estimates employ moments condi-
tioned on non-extinction of the infection.) In order to
accomodate a large range of population sizes and to
illustrate the N�1=2 scaling, both axes in Fig. 1 have
logarithmic scales: note that this tends to de-emphasize
any differences between the various curves shown.
As previously discussed, using parameter values

which are not unreasonable for a childhood disease
such as measles (which has R0E15 and DE5–7 days),
variability is large for many realistic population sizes
(Bartlett, 1960b; Schenzle and Dietz, 1987; Lloyd, 1996;
N(asell, 1999). For populations of sizes of the order of a
million, the coefficient of variation is not much smaller
than one, showing that the number of infectives
fluctuates significantly about its mean. This size of
fluctuation implies that the number of infectives is quite
likely to hit zero, and so fadeouts are common.
The moment equations are seen to perform well over

a wide range of population sizes. In contrast to the
deterministic model, the equilibrium values of the
moment equations do depend on the population size.
The second-order terms scale in such a way that the
coefficient of variation of the number of infectives
exhibits the expected N�1=2 scaling for large values of N;
in agreement with the prediction based on stochastic
linearization.
Over an intermediate range of population sizes, there

are small, but noticeable, differences between the curves
in Fig. 1. The MVN predicts that variability is greater
than the estimate provided by Bartlett’s approximation,
in agreement with the behavior observed in the
numerical simulations. On the other hand, the MM
equations underestimate variability, in some instances
by a substantial amount.
Numerical integrations of the MVN moment equa-

tions diverge for the smallest population sizes shown in
Fig. 1. A closer examination, using numerical bifurca-
tion analysis, shows that there is a critical population
size ðNE106:5Þ at which the stable equilibrium of the
MVN moment equations disappears in a saddle-node
bifurcation. We shall see similar phenomena below, and
we shall return to consider its implications for the
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interpretation of the deterministic equations for small
population sizes in the discussion.
While the MM equations underestimate variability,

their equilibrium remains stable over a wider range of
population sizes. This reduced tendency to exhibit
divergence was previously noted by Keeling (2000a, b).
The MM equations do exhibit unexpected behavior as
the population size becomes smaller still, however, with
the equilibrium point becoming unstable as N decreases
below about 105: This appears to happen via a Hopf
bifurcation, and a stable limit cycle can be observed for
smaller population sizes.
For the smallest population sizes shown in Fig. 1,

extinction of the infection is a frequent event (for
instance, with a population size of one million, over
80% of realizations undergo extinction before 20 years).
Given that the moment equations take no account of
extinction, it is unsurprising that they fail to provide
adequate estimates of variability in this region. Indeed,
for populations of small size, even numerical estimation
of variability becomes problematic as the frequency of
extinction becomes high. (Note that we do not place
much significance in the observation that Bartlett’s
linearization provides the best estimate of variability for
the smallest population size shown in Fig. 1. Since
Bartlett’s approximation underestimates variability for
moderately sized populations, but increases without
bound as N becomes small, the line is bound to intersect
the curve drawn through the numerically estimated
variability at some point.)
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Fig. 2. (a) Numbers of infectives seen in ten realizations of the

stochastic SIR model for N ¼ 107: Initially, the numbers of

susceptibles and infectives were taken to be close to the equilibrium,

ðS�; I�Þ; of the corresponding deterministic model, with S ¼ 1:05S�

and I ¼ 0:8I�: (b) Estimates of the average (solid line) and standard

deviation (illustrated as mean 7 standard deviation) of the number of

infectives seen in the stochastic model, as provided by the moment

equations. Parameter values and initial conditions are as in (a), and

initially the second-order central moments are taken to equal zero

(as all realizations in (a) were started at identical initial conditions).

Results obtained by averaging over realizations of numerical simula-

tions are almost identical (results not shown).
It is instructive to examine the transient behavior of
the system of moment equations. Integrating the
moment equations from an initial condition for which
second-order central moments are zero shows how
variability develops between realizations started at the
same initial condition. Fig. 2 illustrates the behavior of a
set of such realizations, together with the variability seen
between them as estimated by the MVN moment
equations. The realizations are seen to oscillate about
the endemic equilibrium, but slowly drift out of phase
with each other. In the terminology of Nisbet and
Gurney, these are phase-forgetting quasi-cycles (Nisbet
and Gurney, 1982). Interestingly, this behavior, which is
captured very well by either set of moment equations,
explains the damped oscillations exhibited by the
deterministic model: the oscillations in the mean
behavior damp away as the different realizations
gradually become out of phase.
5. The seasonally forced model

Seasonal variation in disease transmission plays an
important role in the transmission dynamics of many
childhood diseases: since schools are centers for the
spread of such diseases, the probability of disease
transmission is considerably higher during school terms
than it is during vacations (London and Yorke, 1973;
Fine and Clarkson, 1982). These seasonal variations in
transmission can be shown to be responsible for the
multi-annual recurrent epidemic patterns seen in real-
world records of disease incidence (see, for instance,
London and Yorke, 1973; Olsen et al., 1988; Olsen and
Schaffer, 1990; Bolker and Grenfell, 1995). Whilst non-
seasonal models for childhood diseases generally exhibit
damped oscillations to a steady endemic level, the
inclusion of seasonality leads to the maintenance of
oscillatory incidence patterns, and deepens the inter-
epidemic troughs. Seasonality, therefore, can heighten
the role played by demographic stochasticity in deter-
mining both the dynamics and the persistence of
childhood diseases, even in sizeable populations (see,
for instance, Yorke et al., 1979; Engbert and Drepper,
1994; Bolker and Grenfell, 1995; Grenfell et al., 1995a).
Many studies of the effects of seasonality have used a

simple form of forcing in which the transmission
parameter, b; is taken to vary sinusoidally (Dietz, 1976)

bðtÞ ¼ b0ð1þ b1 cos 2ptÞ: ð14Þ

More realistic forcing functions have also been con-
sidered, either using more complex phenomenological
functional forms (Kot et al., 1988), or forms which
accurately depict details of the opening and closing of
schools (Schenzle, 1984). For simplicity, the forcing
described by Eq. (14) is employed here; the behavior of
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models with more realistic forcing functions will be
discussed elsewhere.
As the existing analytic methods do not cover the

seasonally forced case, we assess the performance of the
moment equations by comparison with variability
estimates obtained by numerical simulation of the
model. We focus on two particular cases: one for which
the corresponding deterministic model exhibits annual
dynamics ðb1 ¼ 0:01Þ and the second for which biennial
dynamics is observed ðb1 ¼ 0:08Þ: In both cases, before
we can compare predicted and observed variability, we
must briefly discuss the behavior observed in the
simulation studies.

5.1. Weak seasonality, b1 ¼ 0:01

With this weak level of seasonality, we see that the
behavior of model realizations depends quite strongly
on the population size. For small populations (e.g. of
the order of a few million), the realizations undergo
somewhat irregular oscillations with period close to the
natural frequency of the system (about 1.9 years in this
case) (Fig. 3a). At first sight, apart from their increased
amplitude, these oscillations appear quite similar to
those seen in the unforced model.
As the population size is increased, increasingly

regular oscillations which more resemble the annual
oscillations of the deterministic system are observed
(Fig. 3b), as is expected, since for large enough N;
variability should become sufficiently small that the
system approaches the deterministic limit. As N

increases, it becomes clear that seasonality, as in the
deterministic model, imposes a definite phase on
solutions; in the unforced models epidemic peaks could
occur at any time of the year, but seasonality leads to
epidemic peaks occurring at definite times of the year
(Lloyd and May, 1996).
The average behavior of the realizations undergoes

annual oscillations in both of these cases (Figs. 3c and
d). Notice that, even for the smaller population, whose
realizations exhibited almost biennial dynamics, the
average pattern is annual, although with an amplitude
much lower than that seen in individual realizations.
This is exactly analogous to what was observed in the
non-forced case: the biennial component—due to the
stochastic fluctuations—has no definite phase and so
tends to disappear when between-realization averaging
is carried out, although in this case these fluctuations are
superimposed on an underlying annual (rather than a
constant endemic) pattern.
As the population size increases it becomes clear that

the variability between realizations also changes over the
course of a cycle, with, in this case, the maximum
variability observed during the increasing phase of the
epidemic, and roughly coincident with the mid-point
between epidemic trough and peak.
The behavior seen in these cases can be understood by
noticing that variability within and between realizations
arises both from seasonality and from demographic
stochasticity. The importance of stochasticity, therefore,
will depend on the relative sizes of the oscillations in the
average behavior due to seasonality and the fluctuations
due to demographic stochasticity. For small population
sizes, the latter effect will tend to dominate, and the
dynamics of the average will poorly reflect the dynamics
of individual realizations. As the population size
increases, the variability due to stochastic effects
decreases. Most of the variability within individual
realizations then arises from the effects of seasonality,
and so the behavior of individual realizations more
closely follows the average. As the amplitude of the
oscillations caused by seasonality depends in a complex
way on the model parameters (in particular, R0 and b1)
(Kuznetsov and Piccardi, 1994), an analytic exploration
of this effect would appear to be far from straightfor-
ward.
For large population sizes, both sets of moment

equations provide excellent estimates of both the mean
behavior and the variability seen about this mean
(Fig. 4), exhibiting annual oscillations that closely
follow the numerically obtained estimates. However,
the same cannot be said for smaller populations.
Numerical integration of the MVN equations leads to
divergent behavior when N is below approximately 106:9

(notice that this includes the population size shown in
Figs. 3a and c). As in the unforced case, the variability
estimated by the MVN equations is large just above this
critical point, warning that the MVN approximation is
close to breaking down.
The MM equations again underestimate variability

for intermediate-sized populations. Numerical integra-
tion of the MM equations is less likely to lead to
divergent behavior as N is reduced, although the stable
annual cycle seen for large N becomes unstable when N

falls below about 105:
Notice that variability—both as seen in the numerical

simulations and as estimated by the moment equa-
tions—is somewhat larger than in the unforced case, as
witnessed by the larger critical value of N needed for
stable annual behavior of the MVN equations compared
to that needed for stable equilibrium behavior in the
unforced MVN equations.

5.2. Moderate seasonality, b1 ¼ 0:08

With the stronger level of seasonality, the number of
infectives in the deterministic model undergoes larger
biennial oscillations, with deeper inter-epidemic troughs
than seen before. The stochastic model exhibits corre-
spondingly increased levels of variability.
For moderately sized populations, individual realiza-

tions exhibit biennial cycles similar to those seen in the
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Fig. 3. Numbers of infectives seen in realizations of the weakly forced ðb1 ¼ 0:01Þ stochastic SIR model, for two different population sizes:

(a) N ¼ 106:5 and (b) N ¼ 108:5: The average and standard deviation (plotted as average 7 standard deviation) and variability of the numbers of

infectives, calculated from numerical simulations of the model, for these two population sizes are shown in (c) and (d), respectively. All other

parameters as in Fig. 1. Initial conditions were chosen to lie on the annual cycle of the corresponding deterministic model. Notice that results are

shown after 52 simulated years have elapsed as there is a short initial transient period before realizations settle into their long-term behavior. The

dotted lines in (d) illustrate a point at which the variability reaches its maximum.
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from the MVN equations, with the solid line representing the

minimum value of the coefficient of variation of the number of

infectives, taken over an epidemic cycle, and the dashed line its

maximum value. The light curves with circles depict values obtained

from the MM equations, with the minimum and maximum values of cv

denoted by the unbroken and broken curves, respectively. Symbols

represent minimum and maximum values of the coefficient of variation

(crosses and squares, respectively), obtained by averaging over 1000

realizations of the model. All other parameter values are as in Fig. 3.

A.L. Lloyd / Theoretical Population Biology 65 (2004) 49–65 57
deterministic model, but that are clearly less regular
(Fig. 5a). Whilst the epidemic peaks occur at very
similar times in different realizations, the sizes of the
peaks vary somewhat. Occasionally, the phase of the
biennial epidemic pattern shifts by a year, after which
the large outbreaks occur in odd, rather than even, years
(or vice versa). This effect is illustrated by the realization
plotted as the broken curve in Fig. 5a.
When the population size is large, model realizations

closely resemble the biennial oscillations of the corre-
sponding deterministic model (Fig. 5b). (The chance of a
realization undergoing a phase shift, as just described,
appears to be insignificant for this population size: it
never occurred in any of our simulations.)
For large population sizes, the average behavior

exhibits biennial oscillations (Fig. 5d). The peaks in
variability coincide with the peak of the small outbreak
that occurs in inter-epidemic years, and troughs in
variability coincide with the peaks of the large epi-
demics.
An interesting consequence of the phase-shifting

phenomenon which occurs for moderately sized popula-
tions is that the numerically estimated average behavior
has a strong annual component in its dynamics (Fig. 5c).
Correspondingly, the distribution of infectives at a given
point in time exhibits bimodality, arising from the
occurrence of major outbreaks in either odd or even
years. (Indeed, since there is no preference for large
peaks to occur in odd or even years, it will eventually be
the case that those realizations in which the infection has
not died out will be evenly split between the two
possibilities and the average behavior will exhibit purely
annual oscillations.)
Both sets of moment equations give good predictions

of the variability seen when the population size is large
(Fig. 6). As the population size becomes smaller, the
moment equations yet again provide poorer estimates of
the observed variability. The moment equations fail to
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Fig. 5. Numbers of infectives seen in realizations of the moderately forced ðb1 ¼ 0:08Þ stochastic SIR model, for two different population sizes:

(a) N ¼ 107:25 and (b) N ¼ 1010: As for Fig. 3, average, standard deviation and variability of the numbers of infectives for these two cases are shown

in (c) and (d). All other parameters as in Fig. 1. Initial conditions were chosen to lie on the biennial cycle of the corresponding deterministic model.

Notice that results are shown after 52 simulated years have elapsed as there is a short initial transient period before realizations settle into their long-

term behavior.
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Fig. 6. Variability predicted by the moment equations and observed in

numerical simulation of the moderately forced stochastic seasonal

model for various population sizes. The heavy curves depict values

obtained from the MVN equations, with the solid line representing the

minimum value of the coefficient of variation of the number of

infectives, taken over an epidemic cycle, and the dashed line its

maximum value. The light curves with circles depict values obtained

from the MM equations, with the minimum and maximum values of cv

denoted by the unbroken and broken curves, respectively. Symbols

represent minimum and maximum values of the coefficient of variation

(crosses and squares, respectively), obtained by averaging over 1000

realizations of the model. All other parameter values are as in Fig. 5.
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capture either the rapid increase in variability or the
annual dynamics seen in the numerical estimates of the
average behavior that accompany the phase-shifting
phenomenon. In this situation, the failure of the
moment equations not only reflects disease extinction,
but also the dynamical twist introduced by the shifting
of phases: while the dynamics of the numerically
estimated average exhibits a strong annual component,
the moment equations exhibit purely biennial oscilla-
tions. It is, of course, not at all surprising that the
moment equations cannot adequately describe such
situations as the moment closure approximations
assume a unimodal distribution of states. Interestingly,
the failure of the moment equations occurs for some-
what smaller levels of variability than seen in previous
situations in which it has failed, with an average
variability of about 0.13 for N ¼ 108:5; the population
size below which differences become noticeable in Fig. 6.
The situation described for the smaller population size

provides an interesting example of a case in which the
behavior of the average of the system (as estimated by
numerical simulation) is poorly represented by either the
moment equations or the deterministic system.
We again notice that the MVN equations diverge

for population sizes below a certain critical value
ðNE107:1Þ: Yet again, the MM equations consistently
underestimate variability. Compared to the previous
cases, the MM equations are much more prone to
divergence as N is decreased: their stable biennial
attractor is destroyed in a saddle-node bifurcation as
N falls below NE106:9: Below this point, the MM
equations exhibit divergent behavior.
As we have already remarked, the behavior of the

moment equations, unlike that of the corresponding
deterministic system, depends on population size. Their
divergence for small population sizes is a pointed
example of the fact that the moment equations can
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exhibit qualitatively different dynamical patterns as the
population size is varied. This behavior—and its
important implications for the use of deterministic
models in predicting the dynamics of childhood
diseases—is investigated in more detail in Appendix C.
6. Discussion

The moment equations obtained using either moment
closure approximation can, in many situations, success-
fully predict the amount of between-realization varia-
bility generated by demographic stochasticity in finite
populations. When this variability is small, we can be
confident that the deterministic model will provide a
good description of both the average behavior of the
system and that of individual realizations. When this
variability is large, or in the extreme cases where the
moment equations diverge, use of the deterministic
model would appear to be problematic. The moment
equations, therefore, can allow the estimation of the
population size required such that stochastic effects may
be safely ignored in a given situation. Given that the SIR
model, particularly when seasonally forced, often
exhibits large variability for population sizes corre-
sponding to large cities—and in some situations,
variability remains large even when population sizes
are chosen to be larger than the largest modern-day
cities—this observation has clear implications for the
use of deterministic descriptions of epidemic systems
such as those considered here.
The large variability seen in this study is partly a

consequence of the use of the simplest SIR model. As is
shown in Appendix B, the inclusion of an exposed class
reduces variability somewhat, leading to increased
persistence in smaller populations, but seasonally forced
SEIR models still exhibit substantial variability in
realistically sized populations. Indeed, one of the major
efforts in the modeling of childhood diseases has been
an attempt to address the disparity between population
sizes needed for disease persistence within the model
framework and those seen in real world data by the
inclusion of additional biological detail (such as age or
spatial structure) within the model (Bolker and Grenfell,
1995; Keeling and Grenfell, 1997). Inclusion of immi-
gration of infective individuals, which must be done with
some care given its potential impact on disease
dynamics, and more realistic descriptions of the seasonal
transmission parameter may also be important, and we
shall discuss these effects in a future study.
The numerical analysis has highlighted situations in

which the moment equations fail to give good estimates
of variability, and even cases of complete failure of the
moment equations as they diverge. Generally, failures of
the moment equations are associated with high levels of
variability in the numerical simulations. The potential
divergence of the MVN equations is strongly indicated
by considering the behavior of the moment equations as
the population size is decreased from large values
towards smaller values and observing the increasing
variability (cf. Figs. 1, 4, 6 and 10). The failure of the
moment equations in such situations should be seen as a
clear indication that variability is sufficiently large that
fadeout is a very common occurrence and hence that the
assumptions underlying the approximation methods
(and also the deterministic model) are not valid.
We do not yet have a simple criterion for determining

the validity of the solutions of the moment equations
without recourse to generating model realizations. As
mentioned earlier, the methods used to justify the MVN
suggest a simple consistency check, namely that the
variability (as measured, for instance, by the coefficient
of variation) remains small, to ensure its validity.
Several authors have, however, illustrated situations in
which the MVN appears to give reasonable results, even
in situations in which it might not at first be expected to.
Isham (1995), for instance, presents simulation results in
which it is known that the underlying population
distribution is far from normal, and yet the MVN still
performs well. This observation is pursued further by
Stark et al. (2001), where the MVN is viewed as one of a
general family of possible moment closure techniques,
and in which it is shown that other closure techniques
can often outperform the MVN (see also N(asell, 2003).
Possibilities for improvement of the moment equa-

tions include the extension of the moment system to
third order (see, for instance Matis and Kiffe, 1999), or
the use of a moment closure method more likely to be
suited to situations in which population sizes come close
to zero. Indeed, the observed failings of the MVN
appear, in particular its frequent divergence, to have
motivated Keeling’s development of the MM equations
(Keeling, 2000a, b). Whilst the MM equations are less
prone to divergence, we have seen that they are not
immune to such behavior. Furthermore, they were seen
to underestimate variability and hence would tend to
predict enhanced persistence of a disease, compared to
predictions made on the basis of the MVN.
However, whilst improved moment closure approx-

imations may give a more accurate estimate of
variability when the system comes close to fadeout,
they do not address the central point at issue, namely
that extinction leads to bimodality in the distribution of
states (of the unconditioned process). Moment closure
techniques of the type discussed here do not take the
possible extinction of the infection into account. For
many purposes, however, (e.g. in determining the
applicability of a deterministic description of the system)
one may not be so interested in obtaining accurate
estimates of variability, but rather to understand in
broad terms whether variability is likely to be small
or large.
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In this study, attention was focussed on particularly
simple dynamical situations, ignoring the more complex
dynamical issues that arise, for instance, either when the
system exhibits multiple attractors or when noise can
excite ordinarily unstable dynamical objects (such as
‘chaotic repellors’ or unstable saddles) (Rand and
Wilson, 1991; Engbert and Drepper, 1994; Keeling
et al., 2001; Billings and Schwartz, 2002; Rohani et al.,
2002). Variability is likely to be significantly higher in
such situations and it is unclear to what degree moment
equations of the type developed here would be
informative. It is possible, however, to examine transient
behavior (see Fig. 2), which might be useful in many
situations, such as determining whether stochasticity is
likely to bring trajectories close to basin boundaries.
Notice, however, that the non-local nature of such
questions requires additional information concerning
the structure of phase space and the positioning of
pertinent dynamical objects within it (Keeling et al.,
2001; Rohani et al., 2002).
An increasing number of studies in the last decade

have highlighted examples of epidemiological and
ecological systems (both model and real-world) whose
dynamical properties result from an interplay between
stochastic effects and nonlinear dynamics (Higgins et al.,
1997; Grenfell et al., 1998; Keeling et al., 2001; Rohani
et al., 2002). Studies such as these strongly caution
against the over-reliance on dynamical predictions made
on the basis of asymptotic behavior of deterministic
models, unless one can be sure that population sizes are
large enough to ensure that stochastic effects will not
play a large role. Against this background, techniques
which indicate the likely importance of stochastic
effects, preferably without recourse to generation of
model realizations via numerical simulation, are of clear
importance and interest. The wider deployment of
techniques such as the MVN presented here can only
come if we gain a better understanding of their validity
and limitations. This study has provided a first step in
this direction, but has already highlighted some poten-
tial problems, many of which arose in situations where
fadeouts occurred most frequently. Unfortunately, given
the interest in the extinction or persistence of diseases or
populations, these are the sorts of situations in which
epidemiologists and population biologists are often
most interested.
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Appendix A. The lognormal approximation;

the method of multiplicative moments

As an alternative to the multivariate normal approx-
imation, Keeling (2000a, b) assumed that the realiza-
tions could be described by a multivariate lognormal
distribution, i.e. that the logarithms of the state
variables could be assumed to follow a multivariate
normal distribution. The resulting moment equations
can be most compactly expressed in terms of the
variables V̂S; V̂I and x; where

EðS2Þ ¼ V̂S EðSÞ2; ðA:1Þ

EðI2Þ ¼ V̂I EðIÞ2; ðA:2Þ

EðSIÞ ¼ xEðSÞEðIÞ: ðA:3Þ

For reasons clear from their definition, these three
variables are termed the multiplicative moments.
Eqs. (A.1)–(A.3) can be rearranged to give expressions
for the central moments in terms of the multiplicative
moments: notice that equating variances and covar-
iances to zero corresponds to setting the multiplicative
moments equal to one.
The moment closure approximation made by Keeling

corresponds to making the following set of substitu-
tions:

EðS3Þ ¼ V̂3
S EðSÞ3; ðA:4Þ

EðS2IÞ ¼ V̂Sx
2EðSÞ2EðIÞ; ðA:5Þ

EðSI2Þ ¼ V̂Ix
2EðSÞEðIÞ2; and ðA:6Þ

EðI3Þ ¼ V̂3
I EðIÞ3: ðA:7Þ

It is fairly straightforward to show algebraically that
this indeed corresponds to the assumption that the
distribution of ðS; IÞ is bivariate lognormal. Further-
more, Eqs. (A.4)–(A.7) can be directly rearranged to
provide expressions for the third-order central moments
TSSI and TSII in terms of first- and second-order
moments, providing a closed set of moment equations
from (8)–(12), although the resulting equations are
somewhat messy.
The multiplicative moment equations are more

naturally expressed in terms of the variables V̂S; V̂I

and x: Using the method described in detail in Keeling
(2000a, b), it is straightforward to obtain the following
set of equations (for compactness, and using the same
notation as Keeling, the expectations of S and I are
written here as S and I):

dS

dt
¼ mN � bSIx� mS; ðA:8Þ
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dI

dt
¼ bSIx� ðmþ gÞI ; ðA:9Þ
SI
dx
dt

¼ bSIxðSxfV̂S � 1g � IxfV̂I � 1g � 1Þ

� mNIðx� 1Þ; ðA:10Þ
I2
dV̂I

dt
¼ bSIxð1þ 2V̂I Ifx� 1gÞ þ ðmþ gÞI ; ðA:11Þ
S2 dV̂S

dt
¼ mNð1þ 2Sf1� V̂sgÞ

þ bSIxð1þ 2V̂SSf1� xgÞ þ mS: ðA:12Þ

It should be pointed out that these equations differ
slightly from those presented by Keeling. Apart from his
consideration of a metapopulation model with n distinct
patches (from which it is straightforward to obtain the
equations describing a single, well-mixed, patch), we
have included terms describing deaths of susceptibles
and infectives. (For childhood diseases, since both the
average duration of infection and the mean age at
infection are short compared to the average lifespan,
these terms are of small size.) Inspection of Eqs. (A.8)–
(A.12) shows that inclusion of these terms in the model
simply leads to four extra terms: �mS in (A.8), �mI in
(A.9), mI in (A.11) and mS in (A.12). Notice that we also
retain the notation mN to describe births (as opposed to
Keeling’s birth term B).
Appendix B. Moment equations and estimates

of variability for the SEIR model

The SIR model makes the unrealistic assumption that
individuals immediately become infectious upon con-
tracting the infection. In reality, there is usually a latent
period between acquisition of infection and the start of
infectiousness. This can be accounted for within the
model framework by allowing newly infected individuals
to enter an exposed class, where they remain for an
average of 1=s time units before moving into the
infectious class. If, as is taken to be the case in the
SEIR model, it is assumed that the duration of
latency is exponentially distributed, and the number
of exposed individuals is written as E; then the
movement of individuals between the exposed and
infectious classes occurs at rate sE: Notice that the
SIR model is recovered as the s-N limiting case of the
SEIR model.
An equation for the time evolution of the cumulant

generating function can be derived in an analogous way
to that described in Section 2 for the SIR model

@K

@t
¼ bðey2�y1 � 1Þ @2K

@y1@y3
þ @K

@y1

@K

@y3

� �

þ mðe�y1 � 1Þ @K

@y1
þ sðey3�y2 � 1Þ @K

@y2

þ mðe�y2 � 1Þ @K

@y2
þ ðgþ mÞðe�y3 � 1Þ @K

@y3
þ mNðey1 � 1Þ þ nðey3 � 1Þ: ðB:1Þ

The vector y now has three components, ðy1; y2; y3Þ;
corresponding to S; E and I ; respectively. Notice that,
for completeness, Eq. (B.1) includes a term representing
a constant immigration of infectives at rate n:
Expansion of (B.1) and application of the MVN yields

the following set of equations for the moments of orders
one and two of the SEIR model

dEðSÞ
dt

¼ mN � mEðSÞ � bEðSIÞ; ðB:2Þ

dEðEÞ
dt

¼ bEðSIÞ � ðsþ mÞEðEÞ; ðB:3Þ

dEðIÞ
dt

¼ nþ sEðEÞ � ðgþ mÞEðIÞ; ðB:4Þ

d VarðSÞ
dt

¼ mfN þ EðSÞ � 2VarðSÞg þ bEðSIÞ

� 2bfEðSÞCovðS; IÞ þ VarðSÞEðIÞg; ðB:5Þ

d VarðEÞ
dt

¼ðmþ sÞfEðEÞ � 2VarðEÞg þ bEðSIÞ

þ 2bfEðSÞCovðE; IÞ
þ CovðS;EÞEðIÞg; ðB:6Þ

d VarðIÞ
dt

¼ nþ ðmþ gÞfEðIÞ � 2VarðIÞg

þ sfEðEÞ þ 2CovðE; IÞg; ðB:7Þ

dCovðS;EÞ
dt

¼ � ð2mþ sÞCovðS;EÞ

� bfEðSIÞ � EðSÞCovðS; IÞg
þ b½VarðSÞEðIÞ � fEðSÞCovðE; IÞ
þ CovðS;EÞEðIÞg�; ðB:8Þ

dCovðS; IÞ
dt

¼ � ð2mþ gÞCovðS; IÞ þ sCovðS;EÞ

� bEðSÞVarðIÞ
� bCovðS; IÞEðIÞ; ðB:9Þ



ARTICLE IN PRESS

5 25 125 625

σ (year-1) 

0

0.02

0.04

0.06

0.08

0.1

cv

Fig. 7. Variability seen in the SEIR model with different average

durations of the latent period. The broken curve denotes the coefficient

of variation of the number of infectives and the solid curve denotes the

coefficient of variation of the number of individuals who are infected

(i.e. the sum of the exposed and infective individuals). Parameter

values are b ¼ 1010:7=N year�1; g ¼ 73:0 year�1 and m ¼ 0:02 year�1:
This set of parameter values has been commonly used in the literature,

and represents a disease with a 5 day infectious period and a R0 value

of about 14, in a population with average lifespan 50 years (Olsen et al.,

1988). A population size of 108 was used, although this value (provided

N is sufficiently large that fadeouts are not so frequent) is not

important here as changing it would merely rescale the y-axis. The light

line highlights a parameter value commonly used in the literature

ðs ¼ 45:6 year�1; corresponding to an 8-day latent period).
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Fig. 8. Numbers of infectives seen at the start of each year (i.e. at times

t ¼ n; where n is an integer) in the deterministic model, for varying

strengths of seasonality. For small values of b1; a single point is

observed, corresponding to annual behavior. For larger values of b1;
two points are observed, corresponding to biennial behavior. Solid

lines correspond to stable solutions, dashed lines to unstable solutions.

The thickest curve denotes annual behavior, the medium curve denotes

biennial behavior and the lightest curve shows period four solutions.

Other behaviors are also seen for certain parameter ranges; only those

which involve the main annual and biennial attractors are shown.

Parameter values are as in Fig. 1, except that N was taken to equal 107:
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dCovðE; IÞ
dt

¼ � ð2mþ sþ gÞCovðE; IÞ

� sfEðEÞ � VarðEÞg
þ bfEðSÞVarðIÞ
þ CovðS; IÞEðIÞg: ðB:10Þ

Although it has long been realized in numerical
simulations that inclusion of the exposed class tends to
enhance persistence by reducing variability about the
mean, an equation of the form (13) has only recently
been derived for the SEIR model (Andersson and
Britton, 2000), and so there has been less systematic
study of variability in this model. For parameter values
appropriate for childhood diseases, and writing r ¼ g=s;
the variability about the endemic equilibrium of the
SEIR model is approximately

cv ¼ L

D
ffiffiffiffiffiffiffiffiffiffi
R0N

p 1

1þ r þ r2 þ ð1þ rÞ2=R0

 !
: ðB:11Þ

Fig. 7 illustrates how variability depends on the average
duration of the latent period, confirming that variability
is indeed lower in SEIR models with latent periods of
realistic durations. The light line indicates the value of
the latency parameter assumed in several modeling
studies of measles dynamics. For this set of parameter
values, variability is roughly 40% of that seen in the
corresponding SIR model, in agreement with the value
of the factor that appears in brackets in Eq. (B.11).
Appendix C. Dynamics of the seasonally forced

moment equations

In this appendix, we examine the dynamics of the
seasonally forced MVN moment equations as either the
strength of seasonality or the population size is varied,
using the software package CONTENT (Kuznetsov and
Levitin, 1995–1997) to perform numerical bifurcation
analyses. The second of these analyses has no counter-
part in the deterministic literature as the behavior of the
deterministic model is independent of N: The behavior
of the deterministic system as seasonality is increased
has been comprehensively studied in the literature
(Olsen et al., 1988; Olsen and Schaffer, 1990; Schwartz,
1985; Aron and Schwartz, 1984; Engbert and Drepper,
1994; Earn et al., 2000; Lloyd, 2001a), however, and it is
useful to briefly review some relevant findings before
discussing the behavior seen in similar analyses of the
moment equations.
The changing behavior of the deterministic model as

seasonality is varied is illustrated in Fig. 8, which shows
the number of infectives seen at the start of each year.
Regular annual oscillations are observed with weak
levels of seasonality. When the level of seasonality is
moderate, i.e. over a wide range of values of the baseline
transmission parameter, regular biennial cycles are seen
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(Aron and Schwartz, 1984; Kuznetsov and Piccardi,
1994; Earn et al., 2000), although there are different
mechanisms which lead to the appearance of these cycles
(Kuznetsov and Piccardi, 1994; Lloyd, 2001a).
For the parameter values illustrated in Fig. 8, biennial

(and higher period) cycles appear via the period
doubling process (Aron and Schwartz, 1984). Further
period doublings can be seen as seasonality is strength-
ened; with sufficiently strong forcing, chaotic behavior
would be generated (Olsen et al., 1988; Olsen and
Schaffer, 1990). The important point to notice is that as
seasonality is strengthened, the amplitude of the
oscillations increases and the numbers of infectives in
the troughs between epidemics decreases (in the chaotic
regime, the numbers of infectives fall to levels well below
a single individual).
Additional periodic solutions exist for some para-

meter values (Schwartz, 1985; Engbert and Drepper,
1994), for instance triennial cycles are often observed.
Importantly for the behavior of the stochastic model,
these solutions are again often associated with low
numbers of infectives in inter-epidemic periods.
Numerical bifurcation analyses of the moment

equations as seasonality is varied are presented in
Fig. 9, which employs two different population sizes,
N ¼ 108 and 1010: Even though the former case
represents a population which is much larger than any
present-day city, significant variability is observed. As in
the discussion of variability in the main text, we remark
that the large population sizes employed here reflect the
large variability seen in the model: populations of the
size of tens or hundreds of millions are required for
persistence of infection within this model.
There is a general correspondence between the

behavior of the moment equations and the deterministic
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Fig. 9. Numbers of infectives at the start of each year (lower panel) and

equations (upper panel) over a range of strengths of seasonal forcing, for po

behavior and lighter lines biennial behavior, solid curves stable dynamics an

Fig. 1.
system. Several differences are apparent, however, and
as might be expected, these differences are more
pronounced for the smaller population size. Most
notably, the transition between annual and biennial
behavior is more complex. Unlike the deterministic
model, the moment equations do not exhibit a period
doubling bifurcation. The stable annual solution con-
tinues to exist beyond the point at which biennial
cycles appear, although it is associated with high levels
of variability (and so would be unlikely to be observed
as a stable behavior in realizations of the stochastic
model). To what extent these differences, particularly
in the vicinity of bifurcation points where the model
comes close to neutral stability (in the linear sense),
reflect failings of the MVN approximation remains to
be seen.
An important observation from Fig. 9 is the tendency

of variability to increase with increasing seasonality, in
agreement with intuition based on the increasing
amplitude of epidemics as the system becomes more
strongly forced.
Finally, we examine in more detail the behavior of the

moment equations at a given level of seasonality (in this
case we examine the moderately forced, b1 ¼ 0:08;
model) as N is varied (Fig. 10). The average variability
of the predominant stable behavior—the biennial
cycle—exhibits the expected N�1=2 scaling, but as we
saw earlier, there is a population size below which it
becomes unstable and is no longer observed. (Notice
that there is a range of population sizes over which the
biennial cycle is not stable: further bifurcations occur
within this window.)
In addition to the expected period two solution there

is also an annual attractor, however, which exhibits
substantially greater variability than the biennial attractor.
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variability (averaged over an epidemic cycle) predicted by the MVN

pulations of size (a) N ¼ 108 and (b) 1010: Heavy lines denote annual

d broken curves unstable dynamics. All other parameter values as in
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Fig. 10. Average variability predicted by the moment equations for the

moderately forced model ðb1 ¼ 0:08Þ over a range of population sizes.

Annual behavior is represented by the heavy curve, and biennial

behavior by the lighter curve. Stable behavior is indicated by solid

curves and unstable behavior by broken curves. Notice that both stable

annual and biennial behaviors are seen for the same set of parameter

values, in contrast to the corresponding deterministic model. All other

parameter values as in Fig. 1.
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This corresponds to the large-variability annual solution
seen after the appearance of biennial cycles in Fig. 9. We
remark that this annual solution does not give a good
description of the annual dynamics observed in the
simulation-based average behavior of the realizations
(Fig. 5c); as discussed in the main text, we would not
expect the MVN to be able to capture this behavior.
Interestingly, the average variability of this solution
does not appear to scale in the expected way, decreasing
only very slowly as N increases. We suggest that this
annual solution does not, therefore, correspond to an
average of some collection of realizations, and is instead
an artefactual solution arising from the multivariate
normal approximation. Interestingly, in his original
development of the MVN, Whittle noticed equilibrium
points of the moment equations which did not
correspond to equilibria of the corresponding determi-
nistic system (Whittle, 1957). In the examples he studied,
however, such spurious equilibria of the moment
equations were, in contrast to the annual solution
described here, all linearly unstable.
To summarize the results of this section: the

qualitative behavior of the moment equations, unlike
the deterministic model, depends on the population size.
The moment equations also exhibit a more complex
dependence on the strength of seasonality; in particular,
the transition between annual and biennial behavior is
more subtle than the simple period doubling seen in the
deterministic model with this set of parameters. The
moment equations can also exhibit additional dynamical
changes not seen in the corresponding deterministic
model.
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