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INTRODUCTION

Epidemiological studies have uncovered striking
patterns in both the dynamics and persistence of
childhood viral diseases such as measles (Bartlett, 1956,
1957, 1960; Black, 1966; London and Yorke, 1973; Olsen
and Schaffer, 1990; Bolker and Grenfell, 1993). Before
the advent of mass vaccination, recurrent epidemics were
seen in large cities in the developed world, usually taking
the form of multiannual oscillations, with the numbers of
cases falling to low levels between epidemics. Population
size is a crucial determinant of disease persistence
(Bartlett, 1956, 1957, 1960), as highlighted by Bartlett's
notion of the critical community size (CCS)��the
smallest population for which persistence occurs without
reintroductions from outside. In smaller populations the
chain of transmission is likely to be interrupted during
interepidemic troughs, leading to frequent disease ``fade-
outs.''
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Despite an intensive effort, a mathematical model
which predicts satisfactorily both the dynamical and
persistence properties exhibited by incidence records
remains elusive. Bartlett's stochastic formulation of the
basic SIR (susceptible�infectious�recovered) model
provides an explanation for persistence properties, but it
fails to explain many of the dynamical incidence patterns.
The inclusion of seasonality��arising because transmis-
sion rates of childhood diseases are much higher during
school terms (London and Yorke, 1973; Dietz, 1976,
Fine and Clarkson, 1982)��can lead to complex inci-
dence patterns in deterministic models (Olsen and
Schaffer, 1990), but with their deeper interepidemic
troughs, such models predict an unrealistically large CCS
(Bolker and Grenfell, 1993).

With only a few exceptions (Grossman, 1980; Lloyd,
1996; Keeling and Grenfell, 1997, 1998), models for
the dynamics and persistence of childhood diseases��in
contrast to those for long-lived infections, such as
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HIV��describe the duration of the infectious period by
an exponential distribution. This mathematically con-
venient assumption is equivalent to assuming that the
chance of recovery within a given time interval is con-
stant, regardless of the time since infection. Epidemi-
ologically, this is quite unrealistic, as is demonstrated by
statistical studies of the transmission dynamics of
measles in small communities (Wilson et al., 1939; Hope
Simpson, 1952; Bailey, 1954, 1975; Gough, 1977). In
reality, the chance of recovery (in a given time interval)
is initially small but increases over time, corresponding
to the infectious period distribution, hereafter referred to
as IPD, being less dispersed (more closely centred
around its mean) than an exponential (Bailey, 1954,
1975; Gough, 1977). Stated another way, the exponential
distribution overestimates the numbers of individuals
whose duration of infection is much shorter or much
longer than the mean.

In this paper, we investigate the effects of including
more realistic descriptions of the IPD within the
standard SIR framework. We first introduce the more
general model and then discuss its implications for the
key issues of persistence and dynamics. We demonstrate
that the inclusion of more realistic IPDs leads to
decreased persistence and an increase in dynamical com-
plexity. These effects are then discussed in the light of
recent work (Lloyd, 1996; Andersson and Britton, 1997,
2000; Keeling and Grenfell, 1997, 1998), which has
begun to address such issues and suggest a possible
resolution of the conflicting results obtained by Lloyd
and those of Keeling and Grenfell, the latter suggesting
that realistic IPDs should decrease, not increase, critical
community sizes.

THE MODEL

In order to include a more realistic IPD, the exponen-
tial of the basic SIR model (Anderson and May, 1991) is
replaced by a gamma distributed IPD (Bailey, 1964;
Anderson and Watson, 1980; Lloyd, 1996, 2001a;
Andersson and Britton, 1997, 2000). This corresponds to
the subdivision of the single infectious class of the SIR
model into n stages (Cox and Miller, 1965); newly
infected individuals enter the first stage, pass through
each successive stage, and recover as they leave the n th
stage. It should be pointed out that these stages are a
mathematical device used to consider nonexponential
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IPDs; in general they need not correspond to biological
features of the infection (although in some cases it might
be possible to give stages a biological interpretation, such
as the latent period, early or late stage infection). As the
parameter n of the distribution increases, the IPD
becomes more closely centred on its mean, with n � �
corresponding to all individuals having the exactly same
duration of infection. The basic SIR model is recovered
when n=1, and for all but the smallest values of n, the
IPD is very close to normal.

Making standard assumptions (Anderson and May,
1991; Bolker and Grenfell, 1993; Lloyd, 2001a), and
using standard notation (Bolker and Grenfell, 1993;
Keeling and Grenfell, 1997; Lloyd, 2001a), the SIR
model with a gamma distributed infectious period can be
written

dS�dt=+N&+S&;SI

dI1 �dt=;SI&(n#++) I1

dI2 �dt=n#I1&(n#++) I2 (1)

b

dIn �dt=n#In&1&(n#++) In .

Here, S is the number of susceptible individuals and I is
the total number of infective individuals, which equals
the sum of the infective individuals, Ij , in each of the n
stages. The gamma distribution of infectious periods is
determined by its mean and the parameter n. The mean
duration of infection (neglecting background mortality)
is kept fixed at 1�# to enable comparison between models.
Per-capita birth and death rates are equal to + and there
is no mortality due to the disease. Thus the population
size, N, remains constant, and the number of recovered
individuals, R, equals N&S&I. The transmission
parameter is ;, and depends on the probability that an
encounter between a susceptible and infective individual
results in the transmission of the disease and the rate at
which such encounters occur. It is clear that this
parameter depends on the structure and size of the pop-
ulation being considered and it can be argued convin-
cingly (see, for instance, de Jong et al., 1995) that it is
most natural to take ; to be inversely proportional to the
population size (see also the discussion in Anderson and
May, 1991, pp. 304�306, 313, and 314). In all of our
simulations, we scale ; with N in this way, but for nota-
tional simplicity we only write the N-dependence
explicitly when referring to particular parameter values.

A particular strength of SIR-type model formulations
is that all of the model parameters can be estimated
from available demographic and epidemiological data
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(Anderson and May, 1991; Bolker and Grenfell, 1993).
The birth and death rates are available from demo-
graphic data, the average duration of infection and dis-
tribution of infectious periods can be estimated from



studies of disease outbreaks in small communities
(Wilson et al., 1939; Hope Simpson, 1952; Bailey, 1954,
1975; Gough, 1977), and transmission parameters can
be estimated from cross-sectional serological data
(Anderson and May, 1991; Bolker and Grenfell, 1993).
As these parameters can be estimated independently of
the incidence record to which the model's behaviour is
being compared, this strengthens the predictive power of
the model as it is not being used merely as a curve-fitting
device.

DISEASE PERSISTENCE AND THE
STOCHASTIC MODEL

One of the most unrealistic features of deterministic
epidemic models is the ability of infective numbers to
rebound from extremely low levels (such as infective frac-
tions of 10&10 in a model exhibiting chaotic incidence
patterns (Bolker and Grenfell, 1993)); the fade-out
phenomenon cannot occur in deterministic models. Per-
sistence is most naturally studied using a stochastic for-
mulation of the model, in which the movements of
individuals between disease classes are modelled by
Poisson processes (Cox and Miller, 1965). The rates of
the deterministic model are reinterpreted to give the
probabilities of individuals moving between classes in a
given time interval (Bartlett, 1956), thereby accounting
for demographic stochasticity (random effects due to the
population consisting of a finite number of individuals).
In contrast to the deterministic model, the number of
infectives can fall to zero in the stochastic model, after
which the disease remains extinct forever, unless infection
is reintroduced, for instance, by the immigration of
infective individuals from outside the population.

Two straightforward techniques can be used to
simulate the stochastic model. The standard Monte
Carlo approach (Bartlett, 1956; Renshaw, 1991; Gibson
and Bruck, 2000) follows every single transition that
occurs in the population. Since the different possible
transitions are described by independent Poisson pro-
cesses, the total rate at which events (of any type) occurs
is given by the sum of the rates, TR , describing the dif-
ferent transitions. It can be shown that the distribution
describing the waiting time until the occurrence of the
next event (of any type) is exponential with mean equal
to the reciprocal of TR (Cox and Miller, 1965). To per-
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form a single step of the simulation, two random
numbers are generated: the first, generated from the
appropriate exponential distribution, determines the
time until the occurrence of the next event and the
second, generated from a uniform distribution on the
interval from 0 to TR , determines which type of event
occurs. This simulation technique generates exact
realizations of the stochastic process when the model
parameters are time-independent. (If, as is the case below
in the seasonally forced model, parameters are allowed to
vary then the simulation produces approximations to
realizations of the model. In our situation, these
approximations are extremely good, however, since the
seasonal transmission parameter varies negligibly over
the average interevent time of the model.)

Since this Monte Carlo technique follows every single-
transition that occurs in the population, it is computa-
tionally intensive when the population size is large. A
computationally more attractive, but approximate,
approach employs a fixed time step, h, and makes use of
the fact that for a Poisson process of constant rate , the
number of events occurring in a time interval of length h
is Poisson distributed, with mean ,h (Cox and Miller,
1965). To utilise this technique, one must assume that
transition rates in the model do not change much over
times scales of order h. However, since individuals must
spend a multiple of h time units in any given class,
``coarse-graining'' effects can lead to waiting times within
this simulation scheme being longer than expected. If an
individual is supposed to spend an average of T time
units in a given class, a straightforward calculation
reveals that the average simulation time spent in that
class is h�[1&exp(&h�T )], which is always greater than
T for h>0. Assuming h�T<<1, the expression is
approximately equal to T[1+h�(2T )]. The simulation
time interval is constrained by the natural time scales of
the system; h must be short compared to the model's
fastest time scale, which in the case of the basic SIR
model is the average duration of infection.

Repeated simulation of the stochastic model, each time
employing the same parameter values and initial condi-
tions, leads to a collection of non-identical realizations of
the model, in marked contrast to similar simulation of
the deterministic model. Persistence properties depend
on how much these realizations vary from the average
behaviour. The higher the variability, the more likely it is
that the numbers of infectives fall to low values and that
fade-outs occur. From estimates of the variability, the
expected time to extinction (fade-out) can be calculated
(Na# sell, 1999), from which an expression for the CCS
follows (Andersson and Britton, 1997, 2000; Na# sell,
1999).
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For a nonlinear model, the equations for the moments
of the distribution of states do not form a closed set. The
equations for the mean involve the second-order
moments, variances, and covariances. The equations for



the second-order moments involve third-order moments,
and so on. A moment closure approximation, such as the
multivariate normal (MVN) approximation (Whittle,
1957; Isham, 1991; Lloyd, 1996, 2001b), can be used to
truncate the set of moment equations at some order,
allowing variability to be estimated. An alternative
technique, based upon the diffusion equation, in which
the stochastic differential equations describing fluctua-
tions are linearized about the endemic equilibrium
obtained from the deterministic model, has also been suc-
cessfully used (van Herwaarden and Grassman, 1995;
Andersson and Britton, 1997, 2000; Na# sell, 1999). This
approach often gives rise to simpler (often explicit) solu-
tions than those obtained by the MVN approximation.
We remark that this second approach gives solutions
identical to those obtained using Bartlett's stochastic
averaging technique (Bartlett, 1956; Na# sell, 1999).

An illuminating example of the factors which deter-
mine persistence is provided by considering the effects of
demographic stochasticity on a single species system,
assumed to be at equilibrium (Nisbet and Gurney, 1982).
Variability is seen to depend on the magnitude of
stochastic effects buffetting the system and on the
stability of the equilibrium, with more stable systems
(i.e., those which return more quickly to equilibrium after
a perturbation) exhibiting less variability, and therefore
less likely to undergo extinction. This notion that more
stable systems are less prone to stochastic fluctuations is
well known in ecological theory (May, 1973). It is impor-
tant to point out, however, that determining variability
in more complex models is a much more subtle question,
as one must account for the fact that fluctuations in dif-
ferent populations are usually correlated. For more com-
plex models, we would not necessarily expect there to be
a simple relationship between equilibrium stability and
the importance of demographic stochasticity.

As mentioned above, the stochastic formulation
usually allows for the immigration of infective indi-
viduals in order to reintroduce infection following
fade-out. Whilst the notion of persistence is clear for a
closed population, immigration complicates matters
somewhat, and many measures of persistence in popula-
tions subject to immigration might be quite sensitive to
the level of immigration. As a trivial example, allowing a
sufficiently high level of immigration would guarantee
that an infectious individual would be observed at all
times. Furthermore, many measures of persistence may,
to a large part, quantify invasion properties of the dis-
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ease; for instance, the fraction of weeks without cases will
depend not only on the chance of fade-out, but also on
how long it takes the disease to become reestablished
following fade-out. We attempt to minimise the impact of
immigration by asking what fraction of simulations
exhibit fade-out over a 10-year simulation period:
immigration is only allowed during a transient period
before this, and if is only included to maximise the chance
that the disease is present at the start of the 10-year
period.

RESULTS

Model without Seasonal Forcing

The dynamics of the deterministic model (Eq. (1)) in
the absence of seasonality are simple. Depending on the
value of the basic reproductive number (Macdonald,
1952; Anderson and May, 1991), R0 , which, if deaths of
infective individuals are neglected, equals ;N�#, the dis-
ease either goes extinct (if R0<1) or the disease is main-
tained at an endemic level (if R0>1) (Hethcote and
Tudor, 1980). In the latter case, the values of S and I at
the endemic equilibrium are given by S*=N�R0 and
I*=+(R0&1)�;, and this equilibrium is approached via
damped oscillations whose frequency and rate of damp-
ing can be obtained using standard linear stability
analysis. Writing the time dependence of the approach to
the equilibrium as exp(4t), 4 is found to be the dominant
root of the following expression (Hethcote and Tudor,
1980; Lloyd, 1996, 2001a)

4+++;I*&;S*[1&[1+(4++)�(n#)]&n]=0. (2)

Detailed analyses of this stability expression show
that less dispersed IPDs lead to less rapid damping of
the endemic equilibrium compared to the SIR model
(Grossman, 1980; Lloyd, 1996, 2001a); the more realistic
model is less stable than the exponential model (Fig. 1a).
This is exactly in accordance with the conventional
wisdom in ecological theory; the less dispersed distribu-
tion can be thought of as introducing a delay into the
system, and delays are known to often (but not always)
destabilise population models.

Numerical simulation of the stochastic model shows
that less dispersed IPDs lead to larger stochastic fluctua-
tions around the endemic equilibrium (Lloyd, 1996).
This increased variability is confirmed by the analytic
techniques mentioned above (Andersson and Britton,
1997, 2000), as illustrated in Fig. 1a which shows the
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coefficient of variation (standard deviation taken over
the realizations divided by their mean) for the number of
infectives obtained using the MVN approximation.
Notice how the variability about the mean increases as
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FIG. 1. Increased variability about the equilibrium and decreasing d
tious periods in unforced stochastic models. (a) Stability of the endemic
(dotted line), as the number of stages, n, varies between 1 and 40. Varia
by the coefficient of variation of the number of infectives (solid line), obta
taken to be: ;=1000�N year&1 per infective, mean duration of infection
to 10 in these simulations. These parameter values were chosen to be rou
the variability estimates, a population size of 100 million individuals was
a single infectious stage (solid line), a 5-stage model (dotted line) and a
Monte Carlo simulation technique was used to produce 100 realizations fo
realizations in which the disease persisted for a period of 10 years after the
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of infectives, at a rate of 5 cases per year, was allowed. Error bars for the est
structed using the standard formula for the exact confidence limits for the e
persistence observed depends both on the measure of persistence employed
sistence used here leads to apparently lower levels of persistence when comp
when different sets of model parameters are used.
ase persistence with more realistic (less dispersed) distributions of infec-
uilibrium in the deterministic model, as measured by the damping time
ity of realizations about the mean of the stochastic model, as measured
d using the multivariate normal approximation. Model parameters were
#) 3.65 days and +=0.02 year&1. R0 was therefore approximately equal
y comparable with those generally seen for childhood viral diseases. For
med. (b) Disease persistence for the standard (exponential) model, with

stage (dashed line) model. All other parameters as in (a). The standard
ach population size. The fade-out percentage denotes the number of these

of an initial transient period, lasting 30 years, during which immigration
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imated fade-out percentages are not given, but they could easily be con-
stimated probability of success in binomial trials. The absolute level of
and on the model parameters used. The very stringent measure of per-
ared to many other studies. Similar patterns of persistence are observed
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(;1) at which period two cycles first appear in the standard model (upper
there are two mechanisms by which biennial cycles appear, the line-type den
denotes the period doubling bifurcation and the dot�dashed denotes the ta

FIG. 3. Decreasing disease persistence with more realistic (less dis
models. Results are presented for the standard (exponential) model, with a
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with more stages show even lower levels of persistence (results not shown).
is to the left of the minimum point of the n=1 curve on Fig. 2, and the strengt
period was taken to be five cases per year per million individuals in the po
generate 100 realizations of the model at each population size. All other d
obtained for different strengths of seasonal forcing and with different baselin
tions in more realistic models. The curves show the strength of seasonality
rve) and in a model with 5 stages (lower curve). As discussed in the text,
s which of these is responsible for the their first appearance: the solid curve
nt bifurcation. All other parameter values are as for Fig. 1.

sed) distributions of infectious periods in seasonally forced stochastic
gle infectious stage (solid line) and a 5-stage model (dotted line). Models
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The baseline transmission parameter, ;0 , was taken to be 350�N, which
h of seasonality is taken to be ;1=0.03. Immigration during the transient
pulation. The standard Monte Carlo simulation technique was used to
etails and parameters were the same as for Fig. 1. Similar results were
e transmission parameters (results not shown).



the stability of the endemic equilibrium decreases, as
argued above. (The equations underlying these calcula-
tions are not given here, but for further details of the mul-
tivariate normal approximation in SIR-type models for
recurrent epidemics, see Lloyd, 2001b.) As a consequence
of this increased variability, the CCS is greater in the
more realistic model (Fig. 1b). Inclusion of realistic IPDs
leads to an increase in predicted CCS, as supported
by the arguments based on ecological theory outlined
above.

Model with Seasonal Forcing

Whilst the above discussion mirrors Bartlett's original
approach to the question of persistence, it neglects the
impact of seasonal forcing, which must be addressed in
any serious attempt to predict the CCS. Seasonality is
incorporated by allowing the transmission parameter, ;,
to vary over the course of a year. Many forms have been
suggested for this term, ranging from a simple sinusoid
(Dietz, 1976) to more complex functions which mimic
schools opening and closing with terms and vacations
(Schenzle, 1984; Bolker and Grenfell, 1993). We take the
simplest possible form, ;(t)=;0(1+;1 cos 2?t), which
has been widely used in studies of the dynamics of
epidemic models. The parameter ;0 is the baseline trans-
mission parameter, and ;1 measures the strength of
seasonal variation in transmission.

Seasonality leads to the maintenance of recurrent
epidemics in the model. Weak levels of seasonality result
in annual oscillations but multi-annual oscillations,
such as biennial cycles, are seen with strengthening
seasonality. Much attention has been given to the
mechanisms by which such cycles arise, such as the
period doubling bifurcation (Aron and Schwartz, 1984)
and the tangent bifurcation (Schwartz and Smith, 1983;
Kuznetsov and Piccardi, 1994).

As in the unforced model, the dynamical effect of the
introduction of more realistic IPDs is to destabilize the
model (Lloyd, 2001a). Keeping other parameters fixed,
lower levels of seasonality are required to achieve bien-
nial oscillations in the more realistic model (Fig. 2.).
Notice in particular the steepness of the curves on the
left-hand side of this figure, demonstrating how much
stronger seasonality may need to be in order to obtain
biennial cycles in the standard model compared to more
realistic models. For instance, when ;0=350�N, a ;1

value of 0.207 is needed to obtain biennial cycles in the
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standard model, compared to just 0.011 in the more
realistic model with n=5. In a similar way, more com-
plex dynamical behaviours, such as chaos, which are
well known to exist for higher levels of seasonality in the
basic model (Olsen and Schaffer, 1990), are seen with
much weaker forcing in the realistic model (Lloyd,
2001a).

In the seasonally forced stochastic model, realistic dis-
tributions are again seen to increase the critical com-
munity size (Fig. 3). In this case there is a twofold effect
of such distributions: not only is there increased
variability about the mean, as seen in the unforced
model, but there is also a deepening of the interepidemic
troughs, as a consequence of the destabilization of the
dynamics. Notice that the differences in persistence
between different models are much greater than in the
unforced case, bearing witness to this twofold effect.

DISCUSSION

These results are in sharp contrast with those of
Keeling and Grenfell (1997, 1998��hereafter referred to
as K6G), who observe that the use of more realistic
IPDs increases model persistence in simulations of their
epidemic model. They support this observation with a
general argument and suggest that their result should be
fairly general. The results presented here show that the
increased persistence is, in fact, not general. The discus-
sion which follows is an attempt to resolve the conflict
between these two studies. We shall first argue that the
K6G reasoning which led to the claimed generality over-
looks an important issue which can lead to decreased
persistence in many cases. We then suggest reasons why
K6G saw increased persistence in their simulations,
highlighting both the more intricate behaviour seen in
more complex models and an important difference
between the methodologies of their and our studies.

The argument of K6G is based upon the observation,
previously made by Malice and Kryscio (1989), that the
chance of an individual recovering before passing on the
disease is reduced when more realistic IPDs are used.
Consequently, the chance that the chain of transmission
will be interrupted under these conditions is lower in
more realistic models. Whilst this argument correctly
addresses the question of disease invasion and initial
epidemic behaviour (with the chance of an epidemic
occurring, and its initial rate of increase, being higher in
models which employ more realistic IPDs (Anderson
and Watson, 1980; Malice and Kryscio, 1989; Lloyd,
1996)), it cannot be used to address the general issue of
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persistence. Even if this mechanism leads to increased
persistence through a single interepidemic trough, the
use of realistic IPDs increases variability and hence the
frequency of episodes in which the number of infectives



falls to low levels��an effect not considered in the
analysis of K6G. Our simulations suggest that the effect
K6G describe is often not sufficient to overcome the
increased chance of fade-out resulting from the
destabilization observed with the more realistic model.
Of course, the magnitude of the destabilization we
describe is dependent on model parameters, leaving open
the possibility that parameter regimes might exist in
which the K6G effect dominates over the destabilization,
and for which the K6G result would hold.

The model of K6G is much more complex than those
presented here, as it includes, amongst other biological
details, age structure, term-based seasonal forcing and
an ``exposed'' class, corresponding to latently infected
individuals who have been infected with the disease but
are not yet infectious. Models which include an exposed
class are known as SEIR models. Whilst such models are
outside the scope of this study, the inclusion of a latent
class can have important consequences for disease per-
sistence, so we shall comment briefly on their effects. The
inclusion of an exposed class increases the generation
time (defined here as the time between initial infection
and recovery). This means that the total number of
people who are infectious or who will become infectious
(i.e., the number of individuals either in the exposed or
infectious class) is greater than in the SIR model, and
hence leads to an increase in disease persistence. Another
effect of the inclusion of an exposed class is that the
variability in the generation time is lower in an SEIR
model than in an SIR model with the same duration of
infectiousness (see Appendix for more details).

Results both from numerical simulations and analytic
studies of unforced SEIR models show that their
response to changing distributions of exposed and infec-
tious periods is more complex than we observed in the
SIR case (Lloyd, 2001a). For diseases with short latent
periods, the SEIR model is well approximated by the
corresponding SIR model, and so the results described
above immediately carry over. For diseases with longer
latent periods, the changes in stability and variability
about the endemic equilibrium are smaller, probably due
to the reduced variability in generation time, and the
patterns of these changes are not as clear cut (see also
Andersson and Britton, 2000). In agreement with these
observations, numerical simulations of the unforced
model suggest that we are more likely to obtain the
K6G result of increased persistence within an SEIR
framework, particularly if the latent period is long com-
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pared to the infectious period (see Appendix). The inclu-
sion of seasonality, however, again leads to considerable
destabilization of the dynamical behaviour (Lloyd,
2001a), and consequently we still see decreased
persistence with the inclusion of realistic distributions in
seasonally forced SEIR models (see Appendix).

Whenever two models are compared, we must con-
sider the nature of the comparison being made. For
instance, in the case of comparing SIR and SEIR models
just discussed, it can be argued that a fairer comparison
would be between SIR and SEIR models with the same
generation time. A general issue is how parameter values
are allowed to differ between the models being compared.
In our comparisons, models only differ in the variance of
their IPDs. All other epidemiological and demographic
parameters remain fixed, corresponding to the notion
that they can be independently estimated from available
data, as discussed earlier. Since the aim of the K6G
study was to model the persistence and dynamics corre-
sponding to a specific incidence record, they chose to
tune the parameters so that each model achieved a good
fit to the historical incidence record, and consequently
the comparison made in K6G is not the same as that
made here. Since quite different dynamics can result from
changing just the IPD in seasonally forced models
(Fig. 2), we would not be surprised to see quite different
parameter estimates emerging if different models were
fitted to the same data, and so it is quite likely that this
plays a part in the observed differences. (Unfortunately,
the sets of parameter values are not given in Keeling and
Grenfell, 1997, and so it is impossible for us to assess
exactly how important this effect was in their simula-
tions.) Apart from the issues raised earlier concerning the
increased confidence we can place in models when their
parameters are estimated independently of the incidence
record to be modelled, we suggest that changing several
features of the model at once (infectious period distribu-
tion and many model parameters) makes it more difficult
to identify the causal mechanisms responsible for the
changing patterns of persistence.

Within our SIR framework, we have so far only found
one way in which persistence can increase with the inclu-
sion of more realistic IPDs, and this is merely as an
artefact of the Poisson variate simulation technique. The
use of the stage device to represent the infectious class
introduces a much shorter time-scale into the model: the
average time spent in each stage is 1�n of the average
duration of infection. Simulation step lengths appropriate
for the basic model may not be appropriate for the more
realistic model, because the coarse-graining effect leads
to the average simulation time spent in the infectious
class being longer than the nominal average duration of
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infection, reducing the chance of fade-out (Fig. 4). This
problem is most acute for the least dispersed IPDs.

The inclusion of realistic IPDs destabilizes SIR-type
epidemic models, decreasing persistence and increasing
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FIG. 4. Apparent changes in persistence with changing step length w
model presented in Fig. 1. Curves shown used the following step lengths: 0
curve), and 0.000365 days (dot�dashed curve). For comparison, the avera
spent in each of the 50 stages was therefore supposed to be 0.073 days.

Squares denote the results obtained using the standard Monte Carlo
0.00365 days; these results are very close to those obtained for 0.00036
parameters were the same as for Fig. 1. The apparent differences in persist
all of the step lengths are short compared to the average duration of infec
days. Use of the calculation method outlined in the text shows that for t
the infectious class is 4.64 days for this model. Consequently, the chance
least dispersed IPDs, use of this step length in the basic model leads to a
with 5 stages. These calculations are in agreement with simulation results
on simulations of the basic model.

the predicted CCS, exactly in agreement with simple
arguments based upon ecological theory. Interestingly, it
appears that Bartlett realised that the inclusion of a more
realistic IPD would increase the CCS predicted by his
model. He writes (Bartlett, 1957):

It is probable that the simplification of a continuous
removal rate of invectives tends to favour persistence,
partly owing to the increased deterministic damping to an
equilibrium level.

As the epidemiological data suggests that infectious
periods are poorly described by exponential distribu-
tions, the use of an exponential IPD in any particular
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situation must be justified by demonstrating that its use
has little effect on the model being studied. This study
suggests that the deployment of more realistic IPDs has
a major impact both on the dynamical and persistence
n using the Poisson variate technique to simulate the 50-stage unforced
5 days (solid curve), 0.01825 days (dotted curve), 0.009125 days (dashed

duration of infection was supposed to be 3.65 days, and the average time

lation technique. Simulations were also carried out for a step length of
ys and the Monte Carlo technique, and are not shown for clarity. All

e arise as a result of the coarse-graining effect discussed in the text. Whilst
n, 3.65 days, the average time spent in each of the 50 stages is only 0.073
ongest step length employed here, the expected simulation time spent in
fade-out is reduced. To illustrate that this problem is most acute for the
e average duration of infection of 3.67 days, and of 3.74 days in a model
t shown) which demonstrate that increasing h has a much smaller impact

properties of SIR-type epidemiological models. Regard-
ing the dynamical properties, the destabilization of the
dynamics observed here shows that complex dynamics
can be generated using levels of seasonal forcing weaker
than previously thought to be required, answering one of
the major criticisms directed towards those who
advocate the importance of complex dynamics in the
incidence of childhood disease (Olsen and Schaffer, 1990;
Bolker and Grenfell, 1993). The decreasing levels of per-
sistence pose a greater problem to modellers, however.
One of the greatest weaknesses of existing models for
childhood diseases is their inability to reproduce realistic
patterns of persistence. This study suggests that this may
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be even more of a problem once realistic IPDs are taken
into account. This highlights the need for epidemiologists
to gain a better understanding of mechanisms which
enhance persistence, such as spatial structure within
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FIG. 5. Changing patterns of persistence in nonseasonal SEIR models. I
model, with exponentially distributed latent and infectious periods, and the
and infectious periods described by 5-stage gamma distributions: (a) short
period, _=100 year&1, and (c) long-lived latency, _=35.842 year&1. Other p
year&1. In each case, the Poisson variate simulation technique, with step len
Alun L. Lloyd
n each case, the solid line represents the behaviour of the standard SEIR
dashed line represents that of a more realistic SEIR model with latent

-lived latency, _=250 year&1, (b) latent period equal to the infectious
arameters: ;0=1000�N year&1 per infective, #=100 year&1 and +=0.02
gth 0.00365 days, was used to generate realizations of the model.
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FIG. 6. Changing pattern of persistence in a seasonally forced SEIR mo
with exponentially distributed latent and infectious periods, and the dashed
tious periods described by 5-stage gamma distributions. Model parameter
100 year&1 and +=0.02 year&1. In each case, the Poisson variate simulation
tions of the model. Notice that the average latent period is roughly three tim
ntinued
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del. The solid line represents the behaviour of the standard SEIR model,
line represents that of a more realistic SEIR model with latent and infec-
s: ;0=2000�N year&1 per infective, ;1=0.16, _=35.842 year&1, #=
technique, with step length 0.00365 days, was used to generate realiza-

es the average duration of infectiousness.



epidemics. More generally, the important consequences
of an apparently trivial assumption (of the kind routinely
made throughout mathematical biology) on the issues of
persistence and dynamics, which lie at the centre of most
mathematical studies in population biology, should serve
as an important lesson for the wider modelling com-
munity.

APPENDIX

Persistence Properties of SEIR Models

A latent class of individuals can easily been included
with the basic model framework outlined above by
allowing newly infected individuals to enter the exposed
class, where they remain for an average of 1�_ time units
before moving into the infectious class. In the standard
SEIR model, it is assumed that the duration of latency is
exponentially distributed and so, if the number of
exposed individuals is E, the movement of individuals
between the latent and infectious class occurs at rate _E.
More general distributions of latent periods can be con-
sidered by use of the stage device. See Lloyd (2001a) for
further details.

As mentioned above, the generation time in SEIR
models is less variable than in SIR models with the same
infectious period. As an example, take the simplest SEIR
model in which both infectious and latent periods are
described by exponential distributions. The generation
time is described by the sum of two exponential distribu-
tions, which has a variability lower than the single
exponential distribution of the corresponding SIR
model.

Figure 5 illustrates the changing patterns of persistence
seen in the basic SEIR model (which has exponentially
distributed latent and infectious periods) and in an SEIR
model with 5 stage gamma distributions for both the
infectious and latent periods. With short-lived latency
(i.e., large values of _), the persistence patterns are
similar to those described for the SIR model, with more
realistic distributions of infectious and latent periods
leading to decreased persistence (Fig. 5a). For longer
latent periods, the differences in persistence are negligible
(Fig. 5b), whilst for the longest latent periods, persis-
tence is actually increased in the more realistic model
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(Fig. 5c).
Even in cases for which the unforced model shows an

increase in persistence with the inclusion of realistic dis-
tributions of infectious and latent periods, the further
destabilization which occurs with the inclusion of a
seasonally varying contact rate can lead to decreasing
persistence with realistic IPDs. Figure 6 illustrates this
phenomenon in a model for which the latent period is
roughly three times the length of the infectious period,
and for which the corresponding unforced model exhibits
the persistence pattern predicted by Keeling and Grenfell
(1997, 1998).
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