
IL-10 Promoter SNP and Risk of HAM/TSP • JID 2004:190 (1 October) • 1279
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Polymorphism in the Interleukin-10 Promoter Affects
Both Provirus Load and the Risk of Human
T Lymphotropic Virus Type I–Associated
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To investigate non–human leukocyte antigen candidate genes that influence the outcome of human T cell
lymphotropic virus (HTLV) type I infection, we analyzed 6 single-nucleotide polymorphisms in the interleukin
(IL)–10 promoter region in 280 patients with HTLV-I–associated myelopathy/tropical spastic paraparesis(HAM/
TSP) and 255 HTLV-I–seropositive asymptomatic carriers from an area where HTLV-I is endemic. The IL-10
�592 A allele, which shows lower HTLV-I Tax–induced transcriptional activity than the C allele in the Jurkat
T cell line, was associated with a 12-fold reduction in the odds of developing HAM/TSP ( ; odds ratioP p .011
[OR], 0.50 [95% confidence interval, 0.30–0.86]) by reducing the provirus load in the whole cohort (P p

, analysis of variance). Given the OR and the observed frequency of IL-10 �592 A, we demonstrate that.009
this allele prevents ∼44.7% (standard deviation, �13.1%) of potential cases of HAM/TSP, which indicates that
it defines one component of the genetic susceptibility to HAM/TSP in the cohort.

Human T-cell lymphotropic virus (HTLV) type I is the

first characterized human retrovirus [1, 2] and is as-

sociated with adult T cell leukemia (ATL) [3, 4] and

HTLV-I–associated myelopathy/tropical spastic para-

paresis (HAM/TSP) [5, 6]. Unlike HIV, HTLV-I causes

no disease in a majority of infected subjects (healthy
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carriers [HCs]). However, ∼2%–3% develop ATL, and

another 2%–3% develop a disabling chronic inflam-

matory disease involving the central nervous system

(HAM/TSP), eyes, lungs, or skeletal muscles [7]. The

lifetime incidence for developing HAM/TSP is only

0.25% in Japan [8]. The factors that cause these dif-

ferent manifestations of HTLV-I infection are not fully

understood. However, our previous population associ-

ation study of 1200 cases of HAM/TSP and 1200

HTLV-I–seropositive HCs revealed several important

risk factors for HAM/TSP. One of the major risk factors

is the provirus load, as has been reported elsewhere [9].

The median provirus load was 16 times higher in pa-

tients with HAM/TSP than in HCs, and a high provirus

load was also associated with an increased risk of pro-

gression to disease [10]. We next investigated HLA as-

sociations and found that the HLA-A*02 and -Cw*08

genes were associated with a lower HTLV-I provirus
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Table 1. Primers and restriction enzymes used for restriction fragment-length polymor-
phism analysis.

Polymorphism,
primer direction Primer sequence

Restriction
enzyme

Reference
(accession no.)a

�3575 (T/A) TSP509I 25
Forward 5′-GTTTTTCCTTCATTTGCAGC-3′

Reverse 5′-ACACTGTGAGCTTCTTGAGG�3′

�2849 (G/A) AlwI AF295024
Forward 5′-CTGTAATCTCAGCACTCTGG-3′

Reverse 5′-AGTTCAAGCCATTCTCCTGC-3′

�2763 (C/A) DdeI 25
Forward 5′-GAGGACTTGCACCAGGGAACT-3′

Reverse 5′-TCCCGAGTAGCTGGGACTACA-3′

�1082 (A/G) MnlI 26
Forward 5′-TCTGAAGAAGTCCTGATGTCACTG-3′

Reverse 5′-ACTTTCATCTTACCTATCCCTACTTCC-3′

�819 (T/C) MaeIII 27
Forward 5′-ATCCAAGACAACACTACTAA-3′

Reverse 5′-TAAATATCCTCAAAGTTCC-3′

�592 (A/C) RsaI 28
Forward 5′-CCTAGGTCACAGTGACGTGG -3′

Reverse 5′-GGTGAGCACTACCTGACTAGC-3′

a Accession numbers for GenBank/EMBL/DDBJ.

load and with protection from HAM/TSP, whereas HLA-

DRB1*0101 and -B*5401 were associated with susceptibility to

HAM/TSP; HLA-B*5401 was also associated with a higher pro-

virus load in patients with HAM/TSP [11, 12]. We further

examined the non-HLA host genetic factors that affect the risk

of HAM/TSP and reported previously [13] that the tumor ne-

crosis factor promoter �863 A allele predisposes toward HAM/

TSP, whereas the stromal cell–derived factor–1 +801A 3′ un-

translated region and interleukin (IL)–15 191 C alleles confer

protection. In another study [14], we reported the association

between variation in the HTLV-I tax gene and the risk of HAM/

TSP. The tax subgroup A was more frequently observed in

patients with HAM/TSP, and this effect was independent of

HLA-A*02. These findings suggest that both host genetic factors

and HTLV-I subgroup play a part in determining the risk of

HAM/TSP.

To investigate further the non-HLA host genetic factors that

influence the outcome of HTLV-I infection, we analyzed 6 sin-

gle-nucleotide polymorphisms (SNPs) in the IL-10 promoter

region and quantified the effect of each SNP on the risk of

HAM/TSP, because recent studies have revealed a close associ-

ation between IL-10 promoter polymorphisms and the out-

come of certain viral infections, such as Epstein-Barr virus

(EBV) [15], hepatitis B virus (HBV) [16], hepatitis C virus

(HCV) [17], and HIV-1 [18], which suggests that particular

polymorphisms in the IL-10 promoter contribute to the host

immune reaction against viruses.

PATIENTS, MATERIALS, AND METHODS

Study population. Two hundred eighty patients with HAM/

TSP were compared with 255 randomly selected HCs. All pa-

tients and control subjects were Japanese and resided in Ka-

goshima Prefecture, Japan. The diagnosis of HAM/TSP was

made according to the World Health Organization diagnostic

criteria [19]. All subjects provided written informed consent.

Detection of SNPs in the IL-10 promoter region. Poly-

merase chain reaction (PCR)–restriction fragment–length poly-

morphism analysis was performed for 6 SNPs. Primers and

restriction enzymes used in the study are presented in table 1.

A genomic PCR was performed with 50 ng of genomic DNA

as template, 20 pmol of each primer, 5 mmol/L dNTP, reaction

buffer provided by the manufacturer, and 1 U of Takara-Taq

DNA polymerase (Takara) in a final volume of 50 mL. Fifteen

microliters of the amplified PCR product was then digested for

12 h with the use of each restriction enzyme. Finally, digested

PCR products were electrophoresed through a 2% agarose gel

and visualized by ethidium bromide.

Provirus load measurement. To examine the HTLV-I pro-

virus load, we performed a quantitative PCR method using an

ABI Prism 7700 (PE-Applied Biosystems) with 100 ng of ge-

nomic DNA (∼104 cells) from peripheral blood mononuclear

cell (PBMC) samples, as reported elsewhere [10]. When b-actin

was used as an internal control, the amount of HTLV-I provirus

DNA was calculated by copy number of HTLV-I (pX) per 1

� 104 PBMCs p [(copy number of number of b-pX)/(copy
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. All samples were tested in triplicate. The lower4actin/2)] � 10

limit of detection was 1 pX/104 PBMCs.

Cell line and plasmids. The human T-cell line Jurkat was

maintained in RPMI 1640 medium supplemented with 10%

heat-inactivated fetal calf serum, 100 U/mL penicillin, and 100

mg/mL streptomycin. The expression vector pCG-Tax and the

control vector pCG-BL were provided by Dr. J. Fujisawa (Kansai

Medical University, Osaka, Japan). The pCG-Tax expression

vector based on the human cytomegalovirus promoter for

HTLV-I tax was constructed by inserting tax cDNA into the

XbaI-BamHI site of pCG-BL, as described elsewhere [20]. Hu-

man IL-10 promoter fragments (fragment �890 to +120; Gen-

Bank accession number X78437) were amplified by PCR from

genomic DNA from 2 patients with HAM/TSP—one �592 AA

homozygote and one CC homozygote—as described elsewhere

[21]. The primers used to amplify the IL-10 region were IL-

10 -890 (5′-AGC TCG AGA GTT GGC ACT GGT GTA CC-

3′) and IL-10 AS (5′-ACT TCG AAG TTA GGC AGG TTG

CCT G-3′). A promoter fragment that does not contain the

�592 SNP, as well as the neighboring Sp-1 and Ets binding

sites (fragment �571 to +120), was also amplified with the

primers IL-10 �571 (5′-AAC CTC GAG GGA TAT TTA GCC

CAC-3′) and IL-10 AS. The amplified products were subcloned

into the pCR-Blunt II-TOPO vector (Invitrogen), and the se-

quences were confirmed. The correct insertions were subcloned

into the XhoI polylinker site of the pGL2 Basic luciferase re-

porter vector (Promega), and sequences were confirmed again.

Transient transfection and luciferase assay. Five hundred

thousand Jurkat cells were cotransfected with 2 mg of a reporter

plasmid (IL-10 �592 A-Luc or IL-10 �592 C-Luc), together

with 0.5 mg of either pCG-Tax or pCG-BL [20] and 300 ng of

pRL-TK (Promega), to control transfection efficiency. The re-

sults of preliminary studies that measured luciferase activities

from cell lysates at 24, 48, and 72 h after transfection indicated

that the greatest luciferase activity was at 48 h after transfection.

Therefore, after 48 h of cultivation at 37�C, cells were harvested,

washed with PBS, and lysed in reporter lysis buffer (Promega).

Luciferase assays were performed by use of the Dual Luciferase

Assay System (Promega) and a TD-20/20 luminometer (Turner

Designs). All assays were performed at least 3 times, each in

duplicate.

Statistical and logistic-regression analysis. The x2 test was

used to examine associations between HAM/TSP and the IL-

10 promoter polymorphism. General linear model (GLM) analy-

sis [22], which is a general form of multiple regression, was

used to identify which factors were predictors of provirus load,

in patients with HAM/TSP alone, in HCs alone, or in all sub-

jects in the study. Logistic-regression analysis was used to iden-

tify which factors could be used to predict the odds of HAM/

TSP and to fit an equation to estimate the risk in an individual

of known genotype. The prevented fraction (Fp) of disease was

calculated as described elsewhere [11].

RESULTS

Association of the IL-10 5592 A allele with a lower risk of

HAM/TSP. The median age of patients with HAM/TSP (60.0

years; range, 12–81 years; 69.0% female) was greater than that

of HCs (41 years; range, 16–65 years; 57.6% female), and there

were more females in the HAM/TSP group and an absence of

subjects !16 or 165 years old from the HCs; however, these

factors did not affect the frequency of individual HLA alleles

(data not shown). In addition, because the prevalence of HAM/

TSP in Kagoshima is !1% among individuals infected with

HTLV-I, very few HCs in the present cohort would be expected

to develop HAM/TSP. There were no significant differences in

the distribution of all genotypes and allele frequencies between

102 patients with HAM/TSP and 102 HCs in 4 SNPs tested

(table 2). The nucleotide at position �2849 was nonpolymor-

phic in 102 patients with HAM/TSP and 102 HCs. In contrast,

the IL-10 �592 A/C SNP showed a significant difference in

allele frequency. We therefore analyzed further a total of 280

patients with HAM/TSP and 255 HCs (table 2; ; 22x p 8.48

df; ) and identified a significant association betweenP p .014

possession of an A residue in the IL-10 promoter �592 A/C

SNP and a reduced risk of HAM/TSP. Possession of the IL-10

�592 A allele was associated with a 12-fold reduction in the

odds of developing HAM/TSP ( ; odds ratio [OR], 0.50P p .011

[95% confidence interval, 0.30–0.86]). Given this OR and the

observed frequency of the IL-10 �592 A allele in Kagoshima,

we can estimate the Fp [11]. Here, (SD, �13.1%)Fp p 44.7%

when the prevalence rate of HAM/TSP is 0.01, which indicates

that the IL-10 �592 A allele prevents ∼44.7% (SD, �13.1%)

of potential cases of HAM/TSP in the study population.

Association of the presence of the A allele with a lower

provirus load in the whole Kagoshima cohort of HTLV-I–

infected individuals. We next tested the hypothesis that, if a

gene is associated with a protection from HAM/TSP, it is also

associated with a reduction in provirus load in HCs, given that

the risk of developing HAM/TSP is dependent on the provirus

load [10]. Table 3 summarizes the HTLV-I provirus load in

patients with HAM/TSP and HCs, subdivided according to their

IL-10 �592 A/C genotype. Because histograms of provirus load

exhibited right-skewed distributions, the standard statistical

technique of logarithmic transformation [22] was also used to

mitigate this feature, which resulted in the data being more

amenable to statistical analysis by parametric methods. To con-

firm whether the IL-10 �592 A/C SNP is a significant predictor

of provirus load in the entire cohort, we performed multiple-

regression analysis (GLMs; see Patients, Materials, and Meth-

ods). The results showed that the IL-10 �592 A/C SNP is a
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Table 2. Interleukin (IL)–10 polymorphisms
among patients with human T cell lymphotropic
virus (HTLV) type I–associated myelopathy/tropi-
cal spastic paraparesis (HAM/TSP) and healthy
HTLV-I carriers (HCs).

Polymorphism HAM/TSP HCs P

�3575(T/A) 1.00
TT 99 (97.1) 99 (97.1)
AT 3 (2.9) 3 (2.9)
AA 0 (0) 0 (0)

�2849 (G/A) NA
GG 102 (100) 102 (100)
GA 0 (0) 0 (0)
AA 0 (0) 0 (0)

�2763 (C/A) .24
CC 95 (93.1) 89 (87.3)
AC 7 (6.9) 13 (12.7)
AA 0 (0) 0 (0)

�1082 (A/G) .38
AA 93 (91.2) 88 (86.3)
AG 9 (8.8) 14 (13.7)
GG 0 (0) 0 (0)

�819 (T/C) 1.00
CC 12 (11.8) 12 (11.8)
TC 49 (48.0) 48 (47.1)
TT 43 (42.2) 42 (41.2)

�592 (A/C) .014
a

AA 117 (41.8) 101 (39.6)
AC 117 (41.8) 131 (51.4)
CC 46 (16.4) 23 (9.0)

NOTE. Data are no. of samples (%). The IL-10 �592
A allele was associated with a 12-fold reduction in the odds
of HAM/TSP ( ; odds ratio, 0.50 [95% confidenceP p .011
interval, 0.30–0.86]). The proportion of potential cases of
HAM/TSP that are prevented by the presence of the IL-10
�592 A allele (the prevented fraction of disease) [11] was
44.7% (SD, �13.1%) when prevalence rate of HAM/TSP
was 0.01, indicating that IL-10 �592 A allele prevents
˜44.7% (SD, �13.1%) of potential cases of HAM/TSP in
the study population. NA, not applicable.

a
x2 for genotype, .2x p 8.48

significant predictor of provirus load in the entire cohort (n

p535; , Kruskal-Wallis test; , GLM on the log-P p .004 P ! .01

transformed or -untransformed data). This SNP was also a

significant predictor of provirus load in the HC group alone

( ; , Kruskal-Wallis test), but not in the HAM/n p 255 P p .040

TSP group ( ; , Kruskal-Wallis test). Also, pres-n p 280 P p .243

ence or absence of the IL-10 �592 A allele was a significant

predictor of the provirus load in the entire cohort ( ;n p 535

, Mann-Whitney U test; , GLM), although thisP p .001 P ! .005

relationship was only marginally significant in the HC group

( ; ; Mann-Whitney U test; , GLM).n p 255 P p .103 P ! .13

These analyses indicate that the IL-10 �592 A/C SNP was a

significant predictor of the provirus load and that the presence

of A allele was associated with a lower provirus load in the whole

Kagoshima cohort of HTLV-I–infected individuals (table 3).

IL-10 5592 A/C SNP—significant predictor of HAM/TSP

even after accounting for provirus load or HLA-A*02. As was

already mentioned, there was a significant association between

the odds of developing HAM/TSP and the IL-10 �592 A/C

SNP genotype according to the results of single-factor x2 analy-

sis at both the allele and the genotype level. To confirm whether

the IL-10 �592 A/C SNP genotype remains a significant pre-

dictor of HAM/TSP even after taking into account the other

significant predictors identified by our previous analyses, such

as provirus load and HLA-A*02, we performed logistic-regres-

sion analysis. As a result, in logistic-regression analysis that

included HTLV-I provirus load and IL-10 �592 A/C SNP ge-

notype treated as a 3-level factor (i.e., AA vs. AC vs. CC), the

IL-10 �592 A/C SNP remained significant as a predictor of

HAM/TSP ( ). We can calculate the risk for HAM/TSPP p .043

by ln(odds of HAM/ (if AC)–0.0235TSP) p �4.1212–0.5668

(if (pX/104 PBMCs). When we treated theCC) + 2.0764 � log10

IL-10 �592 A/C SNP genotype as a 2-level factor, inclusion of

the absence or presence of the A allele was not significant when

log10(pX/104 PBMCs) was included (Pp .399). However, the

inclusion of the absence or presence of C was significant when

log10(pX/104 PBMCs) was included (Pp .047). Therefore, we

conclude that the IL-10 �592 A/C SNP genotype has predictive

power for HAM/TSP even after we accounted for the HTLV-I

provirus load. Next, to test whether the IL-10 �592 A/C SNP

genotype remains a predictor of HAM/TSP even after we ac-

counted for HLA-A*02, we further performed the logistic-

regression analysis using samples that are available on both

IL-10 �592 A/C SNP and HLA-A*02 ( ). In logistic-n p 402

regression analysis that included the HLA-A*02 and IL-10 �592

A/C SNP genotype, both HLA-A*02 ( ) and IL-10P p .001

�592 A/C SNP ( ) remained significant as predictorsP p .014

of HAM/TSP. In this case, we can calculate the risk for HAM/

TSP by the equation ln(odds of HAM/TSP) p 0.4321–0.8876

(if A*02-positive)–0.2242 (if AC (if CC). In conclu-) + 0.7488

sion, the IL-10 �592 A/C SNP remains as a significant predictor

of HAM/TSP even after taking into account the effects of the

2 known significant predictors of the risk of HAM/TSP—pro-

virus load and HLA-A*02.

Effect of IL-10 5592 A/C SNP on HTLV-I Tax–mediated IL-

10 promoter activity. To examine the functional significance

of the �592 A/C SNP in HTLV-I infection, a 1010-bp promoter

of the IL-10 gene (�890 to +120) carrying either the C or the

A allele was inserted upstream of the luciferase gene in the pGL2-

Basic plasmid vector, and luciferase assays were done. Because

many polymorphisms in the IL-10 gene have been identified,

numerous combinations of these polymorphisms may exist. Al-

though our Kagoshima cohort of patients with HAM/TSP is the

world’s largest, !300 patients are available for analysis, so it would

be meaningless to analyze all combinations of the IL-10 SNPs.

The only sequence difference between the 2 reporter vectors was



IL-10 Promoter SNP and Risk of HAM/TSP • JID 2004:190 (1 October) • 1283

Table 3. Interleukin (IL)–10 �592 A/C single-nucleotide polymorphism (SNP) genotype and
human T cell lymphotropic virus (HTLV) type I provirus load.

Group AA AC CC

HAM/TSP (280) 679.0 � 58.2 (117) 785.8 � 63.8 (117) 959.3 � 139.6 (46)
HC (255) 77.2 � 13.7 (101) 129.6 � 15.7 (131) 194.6 � 50.1 (23)
All patients combined (535) 400.2 � 37.8 (218) 439.2 � 37.5 (248) 704.4 � 103.8 (69)

NOTE. Values are the average tax value (no. of tax copies/104 . The IL-10 �592 A/C SNP wasPBMCs) � SE
a significant predictor of provirus load in the entire cohort ( ; , Kruskal-Wallis test; , generaln p 535 P p .004 P ! .01
linear model analysis on log-transformed or -untransformed data) and of provirus load in the HTLV-I–seropositive
asymptomatic carriers alone ( ; , Kruskal-Wallis test) but not in the HAM/TSP group ( ;n p 255 P p .040 n p 280

, Kruskal-Wallis test). Values in parentheses are nos. of individuals tested. HAM/TSP, associated mye-P p .243
lopathy/tropical spastic paraparesis; HC, healthy carrier.

Figure 1. Interleukin (IL)–10 �592 A/C polymorphism and the Tax-mediated transcription of the IL-10 promoter. Jurkat cells were transfected with
human T cell lymphotropic virus (HTLV) type I Tax expressing (pCG-Tax) or control (pCG-BL) vector and luciferase (luc) reporter constructs containing
the full-length IL-10 promoter with �592 AA (�890 A-luc) or CC (�890 C-luc) or luc reporter plasmid without the specificity protein (Sp)–1 or �592
A/C SNP (�572 luc) sites. Gray bars, Luc activity of each reporter plasmid with control vector pCG-BL. Black bars, Luc activity of each reporter
plasmid with Tax-expressing vector pCG-Tax. The activities are given relative to the activity of each reporter plasmid with control vector pCG-BL,
which was defined as 1. The from 3 independent experiments is shown. The basal luciferase activity with pCG-BL was not differentmean � SD
between �890 A-luc and �890 C-luc. The difference of luciferase activity with pCG-Tax between �890 A-luc and �890 C-luc was statistically
significant ( , Mann-Whitney U test). CRE, cyclic AMP response element; GM-CSF, granulocyte macrophage colony-stimulating factor; GRE, glu-P ! .01
cocorticoid response element; STAT, signal transducer and activator of transcription.

the residue at position �592, which allowed us to estimate the

functional differences associated with the �592 A or C residues

alone. The results of the experiments showed that the functional

differences were associated with the �592 A or C residues alone

on HTLV-I Tax–mediated IL-10 promoter activity. These results

showed that the ectopic expression of the Tax protein in Jurkat

T cells increased IL-10 promoter activity by ∼3 times with the

A construct and 6 times with the C construct, compared with

HCs ( , Mann-Whitney U test) (figure 1). In contrast, theP ! .01

promoter fragment (fragment �571 to +120), which does not

contain �592 SNP, as well as the neighboring Sp-1 and Ets

binding site, was not transactivated by Tax. The basal luciferase

activity without the transfecting Tax-expression vector (i.e., with

transfecting empty vector, pCG-BL) did not differ between the

A and C constructs. These results indicated that Tax directly

transactivates the IL-10 promoter and that the C allele is more

effective for Tax-mediated transcription than the A allele.

DISCUSSION

IL-10 is an important immunoregulatory cytokine that is in-

volved in inflammatory responses, autoimmune diseases, and

the response to infectious agents [23]. Although IL-10 has been

reported to suppress the synthesis of proinflammatory cyto-

kines from T cells and monocytes/macrophages, animal models

have suggested that the overexpression of IL-10 in vivo can

cause organ-specific autoimmune diseases, such as Sjögren syn-

drome [24] and type 1 diabetes [25]. Therefore, IL-10 is not

regarded simply as an immunoinhibitory cytokine but also as

a powerful immunostimulatory cytokine. Because transgenic

mice containing the HTLV-I tax gene under the control of the

viral long-terminal repeat (LTR) have previously been shown

to develop an exocrinopathy involving the salivary and lach-

rymal glands that resembles Sjögren syndrome [26], which is

frequently observed in patients with HAM/TSP [27], and be-
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cause IL-10 mRNA expression was induced by HTLV-I Tax in

both transiently and stably transfected Jurkat cells [28], it is

likely that Tax directly transactivates the IL-10 promoter. The

resulting overexpression of Tax in vivo may cause a Sjögren-

like syndrome via an IL-10–mediated mechanism.

The implication of a heritable genetic basis for IL-10 pro-

duction is supported by the concordance of IL-10 production

in monozygotic twins, which suggests that genetic polymor-

phism could account for up to 75% of the observed variation

in IL-10 production [29]. As was already mentioned, several

studies have shown an association between particular poly-

morphisms in the human IL-10 promoter region and the out-

come of certain viral infections, such as EBV [15], HBV [16],

HCV [17], and HIV-1 [18]. In view of the immunomodulatory

and anti-inflammatory effects of IL-10, we initially hypothe-

sized that genetically determined lower production of IL-10 (as-

sociated with the allele �592 A) might influence disease sus-

ceptibility to HAM/TSP. This is the case for HIV-1 infection,

because individuals with the IL-10 �592 AA genotype have

been reported to be at higher risk of HIV-1 infection and rapid

progression to AIDS [18]. In contrast, the present data show

that, in HTLV-I infection, possession of the IL-10 �592 A allele

prevented ∼44.7% (SD, �13.1%) of potential cases of HAM/

TSP and was also a significant predictor for a lower provirus

load in the entire cohort.

The �592 A/C SNP is located between the Sp1 and Ets

binding site within the region between �652 and �571 nt that

is necessary for IL-10 transcription [21]. It is of interest that

previous reports have indicated that Tax transactivates the par-

athyroid hormone–related protein promoter by forming a ter-

nary complex between Tax, Ets, and Sp-1, which acts on the

promoter Sp-1 and Ets binding sites [30]. Another report

showed that the HTLV-I LTR also contains a motif related to

the Ets-binding sequence, named TRE-2S [31]. More impor-

tant, 1 copy of the cyclic AMP response element (CRE)–like

21-bp sequence and TRE-2S in the HTLV-I LTR, contributes

to the transactivation of viral gene via a ternary complex formed

between Tax, Gli2 (TRE-S binding Gli oncogene family pro-

tein), and CRE-binding protein [32]. These findings suggest

that a common mechanism of the HTLV-I Tax–mediated trans-

activation of the promoter of target genes ternary complexes

formed with 2 different transcription factors. Furthermore, the

results also suggest that the IL-10 promoter �592 A/C SNP,

which lies between the Sp-1 and Ets binding sites, affects Tax-

mediated transcription. Indeed, our cotransfection study using

a Tax-expressing vector and Jurkat cells demonstrated that a

IL-10 �592 luciferase vector carrying the high producer allele

(C) showed higher Tax-mediated transcription than that of low

producer allele (A), whereas a promoter fragment (fragment

�571 to +120) that does not contain �592 SNP, as well as the

neighboring Sp-1 and Ets binding site, was not transactivated

by Tax. These findings suggested that HTLV-I Tax directly trans-

activates the IL-10 promoter and that the �592 A/C SNP affects

Tax-induced transcription—that is, that the C allele is more

effective than the A allele in mediating the Tax-induced tran-

scription of IL-10. In future studies, it may be interesting to

test whether Tax, Ets, and Sp-1 form a ternary complex on the

IL-10 promoter and whether the �592 SNP affects this complex

formation.

Among 190 non-HLA candidate gene loci that we have so

far examined, the IL-10 �592 A/C SNP is the only non-HLA

candidate gene locus associated with a significant reduction in

both the provirus load and the risk of HAM/TSP. This obser-

vation is exactly analogous to the argument that we previously

reported for HLA-A*02 and -Cw*08, where, in each case, pos-

session of the allele was associated with both a significant re-

duction in provirus load in the HCs and a significant reduction

in the risk of HAM/TSP [11, 12]. Thus, one possible mechanism

for the observed IL-10 promoter effect is that increased the

production of IL-10 reduces the efficiency of immune surveil-

lance of HTLV-I infection—for example, by reducing the num-

ber or the activity of HTLV-I–specific cytotoxic T lymphocytes.

However, the IL-10 promoter genotype remained a significant

predictor of the risk of HAM/TSP even after taking the provi-

rus load into account. This observation suggests that IL-10 in-

creases the risk of HAM/TSP by another mechanism in addition

to an apparent effect on provirus load.

In conclusion, we report that the IL-10 �592 A allele, which

is associated with lower HTLV-I Tax–mediated transcriptional

activity, influences both the provirus load in HTLV-I–infected

individuals and the susceptibility to HAM/TSP in the Kago-

shima cohort. This effect remains significant even after taking

into account the other 2 known major predictors of HAM/TSP

risk in this cohort—provirus load and HLA-A*02 genotype—

which suggests a powerful argument in favor of a real physi-

ological effect of this polymorphism. Further functional studies

to clarify the role of IL-10 in HTLV-I infection may reveal

immunotherapeutic strategies that would retard the develop-

ment of HAM/TSP.
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