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Linear filters and nonlinear forecasting

ALUNL.LLOYD anp MICHAEL B. GRAVENOR
Department of Zoology, University of Oxford, South Parks Road, Oxford 0X1 3PS, U.K.

SUMMARY

We consider the consequences of using linear filters to reduce noise before analysing short time series for
low-dimensional chaotic behaviour. We discuss mathematical theory which suggests that certain filters
should not affect the results of particular nonlinear analyses. We note that these results have only been
proved for purely deterministic systems and need not be true when a stochastic component is present in
the time series. In particular, we demonstrate that simple moving average filters can falsely suggest that
a white noise data set is chaotic by using a test commonly used by biologists. This incorrect result is not
obtained if the method of surrogate data is used together with this test. The results demonstrate the
extreme care needed when analysing small data sets by using sophisticated mathematical techniques. The
graphical technique we describe may also aid testing for linearity in time series.

1. INTRODUCTION

There are many difficulties to be faced in the analysis
of biological time series. Only some of the variables
needed to describe the state of the system have been
measured. Sampling errors give rise to noise in the
data, in addition to any noise due to randomness in the
underlying biological process. The time series are often
of a short length and may consist of data sampled
infrequently. Partial solutions to some of these problems
have been provided by recent advances in dynamical
systems theory. ‘Phase space reconstruction’ (Takens
1981) allows the essential part of the dynamics of a
multi-dimensional system to be inferred from a single
variable sampled at discrete time intervals. Nonlinear
forecasting (Farmer & Sidorowich 1987; Sugihara &
May 1990) has been suggested as a method which can
differentiate between stochastic and various forms of
deterministic dynamics. Linear filters can be used to
reduce observational noise. However, these math-
ematical results have only been studied under idealized
conditions, for data sets which are far removed from
those encountered by biologists in experimental situ-
ations. Because of the short length of many biological
time series, nonlinear forecasting is often the preferred
tool for nonlinear analysis. In this paper we show that
nonlinear forecasting can give misleading results when
applied to short, noisy time series which have been
filtered in an attempt to reduce the level of noise.
However, a more sophisticated approach can identify
many of the occasions when stochastic dynamics mimic
chaotic dynamics. Our results echo those of authors
who use different methods, such as dimensional
calculations, to test for determinism in time series
(Rapp et al. 1993).

2. METHODOLOGY

(a) Nonlinear forecasting

Given a time series consisting of n values sampled at equal
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time intervals, we use the “method of delays’ (Takens 1981;
Sauer e al. 1991; Sauer & Yorke 1993) to reconstruct the
dynamics of the original system. The E-dimensional set of
points ¥, = (%, %;_,,...,%_z_y,,) i constructed, and we call
this reconstruction the phase space. The embedding di-
mension E must be chosen appropriately; the method we
adopt is to choose E so as to optimize the predictions made
by nonlinear forecasting (Sugihara & May 1990). Although
in theory one can choose any value for the lag time 7,
practical problems arise if the data are oversampled (7 small)
or undersampled (7 large). In our examples we set T equal to
one.

Nonlinear forecasting can now be used to analyse the data.
This technique can be used to differentiate between non-
chaotic deterministic dynamics, chaos and deterministic
dynamics with additive white noise. The basic idea is to use
some part of the data set (in this paper we use the first half
of the data set) to produce a set of patterns of behaviour
which is then used to make predictions on the remainder of
the data.

These predictions are made for several time steps into the
future, and their accuracy is assessed by plotting predicted x
values against the actual x values and calculating the
correlation coefficient (7). The curve obtained by plotting »
values for different prediction time intervals 7'may then give
information about the nature of the dynamics. Chaotic
deterministic dynamics are characterized by the exponential
divergence of neighbouring trajectories, so predictions be-
come less accurate over longer time intervals. This is observed
as an 7—7 curve that has high r values for small 7" but falls
sharply as T increases. If the dynamics are deterministic, but
not chaotic, then the curve shows a high r value for all
prediction intervals. The effect of additive white noise is to
reduce the observed r value by an amount which does not
vary much with 7. However, it has been realized that
autocorrelated noise (also called coloured noise) can give
misleading results. This may pose a problem in interpreting
the results obtained for biological time series, as most
biological populations tend to exhibit short-term autocor-
relations.

Figure 1 demonstrates these different forms of the r—7T
curves using data sets generated from three simple equations:
(i) the chaotic logistic map, x;,; = 4x,(1 —x,); (ii) a sum of
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Figure 1. Correlation coefficient against prediction interval
(r=T') curves for the chaotic logistic map, x,,, = 4x,(1 —x;)
(solid line and circles), the sum of two sinusoids, x; = sinj
+2sin2j (broken line and crosses), and the sinusoidal time
series with independent normal deviates A7(0,1) added
(broken line and triangles). For each of these curves, 1000
data points were used, the embedding dimension E was 3.
Normal deviates were generated by the NAG routine
GO05DDF.

two sinusoids, x; = sinj+2sin 2j; and (iii) the sinusoidal time
series, to which we add observational noise, simulated by
independent normal deviates .A7(0, 1).

Many different prediction methods have been proposed
(Casdagli 1989). The method used to produce the predictions
makes quantitative changes to the 7T curve, but does not
change its overall shape (Kennel & Isabelle 1992). We use a
zeroth-order predictor, where we just follow the behaviour of
the nearest neighbour of the test point.

(b) Predictability and Lyapunov exponents

We have seen that for chaotic systems the predictability
falls off with increasing 7. This is a consequence of the
sensitive dependence to initial conditions shown by chaotic
systems, with nearby trajectories diverging, on average,
exponentially at a rate given by the largest Lyapunov
exponent (A) of the system. This divergence will clearly
restrict predictability; any errors introduced by the pre-
diction scheme will tend to grow exponentially. Farmer &
Sidorowich (1987) and Casdagli (1989) give asymptotic
results that connect the prediction error to the Lyapunov
exponents. It should be emphasized that Lyapunov expo-
nents are a global property of a chaotic system, measuring
divergences averaged over the whole attractor. Local
Lyapunov exponents can be defined which may be more
useful in quantifying predictability for different parts of an
attractor (Gallez & Babloyantz 1991).

(¢) Linear filtering

To remove observational noise from experimental data,
some sort of filtering procedure may be used. The most
commonly used is a low-pass filter which removes high-
frequency components by a smoothing (averaging) process.
One example of this is an equal weight m-point moving
average

m—1

z;=(1/m) B %,
k=0
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Moving averages have been used in the analysis of data from
measles epidemics (Schaffer & Kot 1985).

Low-frequency components may be removed by using a
high-pass filter; the simplest example is taking first differences
of the time series which heightens short-term variations in the
data.

Both of these filters act in the time domain, but by means
of Fourier transforms we can create a linear filter in the
frequency domain. Let {%,} denote the n components of the
Fourier transform. We can apply any linear map to these
components before inverting the transform. For instance,
Rapp ¢t al. (1993) used a filter defined by multiplying {%,} by
F,, where

F, = max[0,1—ck?], ¢=0.37x1075

When talking about filters we distinguish between finite
impulse response (FIR) and infinite impulse response (IIR)
filters. These are defined by considering the output sequence
z; obtained from the input sequence which consists of all zeros
except at the kth entry where it is one. The filter is an FIR
filter if only a finite number of z; are non-zero, otherwise it is
an 1R filter. All three filters defined above are Fir filters, and
in this paper we are primarily concerned with FIr filters.

For time series generated by deterministic systems there
are mathematical results (Sauer et al. 1991 ; Broomhead et al.
1992; Sauer & Yorke 1993) which show that delay coordinate
properties are unchanged by using an FIR filter, in particular
Lyapunov exponents and the dimension of the attractor are
unchanged. These theorems hold for generic filters and
observations, and so it is possible to construct examples which
appear to contradict these results (Sauer & Yorke 1993). nr
filters introduce new Lyapunov exponents and can change
the dimension of the attractor (Badii & Politi 1986; Sauer &
Yorke 1993).

3. THE EFFECTS OF SMALL DATA SETS

For short time series, which may be noisy, practical
issues become important. Although the theoretical
results show that FIr filters leave certain dynamical
quantities unchanged, they do not tell us how estimates
of them are altered by using filtered data. For instance,
Broombhead et al. (1992) explain how application of an
FIR filter may lead to overestimation of the dimension.
It must also be emphasized that the mathematical
results were derived for noise-free systems, and that
filtering can effect any stochastic component present in
the data.

It is often impossible to avoid filtering of data, as it
may be introduced by the equipment used to take
measurements; for instance, low-pass filters are used by
all EEG systems (Rapp 1993). If the filter is an FIR filter
then the Lyapunov exponents are invariant. Because
these exponents are linked to predictability, it may be
argued that filtering should not affect the prediction
process. (The new Lyapunov exponents introduced by
an 1R filter may have an effect on predictability.)

It is not widely realized that processing the data can
introduce short-term autocorrelations. Such autocor-
relations can affect the prediction process. Moving
averages are commonly used to reduce noise, or to
remove seasonal effects, in time series. This procedure
can fool the nonlinear forecasting test into seeing a
white noise time series as chaotic.

We take x; to be independent A47(0,1) random
variables; numerically we simulate this by using



Linear filters and nonlinear forecasting A. L. Lloyd and M. B. Gravenor 159

®)

06 (o)

0.4

0.2

correlation coefficient

0.0

60 80 100

time

-0.2

prediction interval

0o 2 4 6 8 0

2 4 6 8
prediction interval

Figure 2. (a) The first 100 points from the white noise data set, generated by taking values independently from
A7(0,1). (b) The first 100 points obtained by using a four-point equal weight moving average on the white noise data
set. (¢) r—T curve for the white noise data set. (d) r—7 curve for the smoothed white noise data set.

standard routines, such as those provided by the NAG
library (NAG Central Office, 7 Banbury Road,
Oxford, U.K). We then take a four-point moving
average,

Z; = (1/4) (xj+xj+1+xj+2+xj+3)5

and apply the test to this time series. Figure 2 (a, 0)
shows the time series x; and z;; the smoothing effect of
the filter is quite visible. Figure 2 (¢, d) shows the r—T
curves for these time series. The former shows that our
forecasting scheme cannot produce good predictions
for the completely random white noise time series, but
the shape of the curve in the latter closely resembles
that seen for a chaotic series. This form of filter
introduces obvious short-term correlations into time
series, but more subtle filtering procedures can also do
this. The time domain filter of Rapp et al. (1993) is an
attempt to simulate the kind of filter found in EEG
equipment, and they found that it had a similar
smoothing effect on white noise.
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4. THE METHOD OF SURROGATE DATA

Autocorrelated noise can give 77 curves similar to
those generated by chaotic data sets. The method of
surrogate data (Theiler ef al. 1992) is an attempt to
detect false positive results such as this. The basic idea
is to take the observed time series and generate series
which are random but still preserve certain chosen
statistical properties of the original series. These
random series are called the surrogates. The forecasting
test is applied to both the surrogate and the original
series, and one looks to see whether there is a significant
difference between the correlation coefficients observed
for the randomized and original time series. This idea
was used by Stone (1992) when he considered the
question of whether the New York measles data set
contained a low-dimensional chaotic signal.

This procedure can be placed in a more rigorous
statistical framework. We take a null hypothesis, H,,
for instance, H,: All the structure in the time series is
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given by the autocorrelation function. If we know the
distribution of the test statistic (in our case, the value
of the correlation coeflicient T steps into the future)
under H,, we can determine whether the result
obtained from the actual time series provides significant
evidence against the model proposed by the null
hypothesis. For a given H,, and making certain
assumptions about the distribution of noise, we may be
able to calculate this distribution. Usually, however,
we do not know this distribution, so we estimate it by
direct Monte Carlo simulation. We calculate the value
of the statistic for many surrogate series, and from this
set of statistics we can estimate the distribution. Theiler
et al. (1992) suggest the use of a rank statistic approach,
where one looks to see in which percentile of the
distribution of the surrogate statistics the observed test
statistic falls. An approximate significance level can
then be quoted.

The method chosen to produce the surrogates is very
important: our surrogate series are produced by using
a method which preserves the autocorrelation spectrum
(or, equivalently, the Fourier power spectrum). The
technique is discussed in detail in Franke & Hirdle
(1992); this and techniques appropriate to other
choices of H, are discussed in Theiler et al. (1992) and
Smith (1992). The Fourier transform of the series is
taken, the phases of the (complex) transformed series
are randomized, and the inverse Fourier transform is
then taken to give the surrogate series. The phases are
chosen independently and uniformly between 0 and 27.
To ensure that the surrogate series are real, a symmetry
condition must be imposed on the phases: ¢_, = —¢,.
The surrogate series therefore have the same linear
autocorrelations as the original series, but any non-
linear structure present in the observed series is
destroyed. By using these surrogate series we can
determine whether the shapes of the r—7 curves are due
to the linear autocorrelations in the series. This method
for generating the surrogates has been used to test
whether time series data are consistent with a station-
ary linear Gaussian process (Theiler ef al. 1992).

5. RESULTS

This method was applied to surrogate series gener-
ated from various data sets. Figure 3a shows the results
obtained for the simple logistic map. There is a
significant difference between the curves for the time
series and its surrogates. For predictions up to six time
steps into the future, none of the 100 surrogate series
has a higher correlation coefficient than the original
time series. This is because the autocorrelation function
of the logistic map is zero for all times into the future
(the iterates are delta-correlated) ; none of the observed
predictability is due to linear autocorrelations. For the
white noise data set there is no significant difference
between the curves for the data set and the surrogates
generated from it (figure 34). The same is true for the
filtered white noise time series (figure 3¢); the decline
in predictability is seen to be a consequence of the
linear correlations introduced by the filtering. For the
filtered logistic data, however, we can still distinguish
a significant difference between the curves (figure 34d).
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This data set is chaotic but shows significant linear
autocorrelations. As a result there is a smaller difference
between the quality of predictions made for the original
and surrogate series than was seen for the unfiltered
data (figure 3a). Figure 3¢ shows r—7 curves for data
generated by adding observational noise, simulated by
independent .47(0,0.1) deviates, to the logistic map
data, and 100 surrogates generated from this series.
The results obtained when this data set is filtered are
shown in figure 3/. Because the iterates of the logistic
map lie between 0 and 1, the noise-to-signal ratio is
high in this example. Even though the noise has a large
effect on the 7 curves for the original data set, we can
still observe a difference between the surrogates and
the original data.
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Figure 3. Surrogate data analysis using 500 points from the
following data sets: (a) chaotic logistic map; (b) white noise
data set; (¢) white noise data smoothed by using four-point
moving average; (d) logistic map data smoothed by using
four-point moving average; (¢) logistic map plus independent
A7(0,0.1) deviates; (f) (logistic+ noise) smoothed by using
four-point moving average; 100 surrogate series were
generated as explained in the text; 77 curves for these series
are shown by the circles. The T curve for the original data
is shown as the solid line.
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It has been pointed out (H. Tong, personal com-
munication) that figure 3 can be interpreted in the
context of testing for linearity as discussed above.
Figure 3a shows strong evidence against linearity, as
would be expected because the iterates of the logistic
map are delta-correlated. Figure 34, ¢ shows that the
data are consistent with linearity. Figure 34 shows
that, even after introducing linear correlations by using
a four-point moving average, the logistic data still
exhibit fairly large departures from linearity. Figure
3¢, f shows that the addition of high variance noise
masks most (but not all) of the evidence of departure
from linearity seen in the noise-free cases.

By using this method we can separate the effects on
predictability of linear autocorrelations, such as those
introduced by filtering, and other dynamical effects. If
we have an unfiltered data set (keeping in mind the
caveat that some equipment may use filters), we can
apply linear filters in an attempt to reduce noise, and
then check that any structure seen in the 7 curve is
not a result of filtering.

6. DISCUSSION

The idea that filtering can affect statistical analyses
of time series is not new; Cole (1954) drew biologists’
attention to the fact that smoothing random data by
using a moving average can lead to the introduction of
spurious cyclic behaviour. However, the filtering of
data is often highly desirable, or even unavoidable.
Unless suitable precautions are taken, filtering may
bias further analyses applied to the data. The method
presented here can identify when this is the case. This
not only enables the rejection of spurious results, but
also allows filtering procedures to be used with more
confidence because we can determine whether struc-
ture in the filtered data was present in the original data
or was introduced by the filtering.

Surrogate data techniques can be used more
generally to test whether a time series may be a
realization of various other stochastic models, given
appropriate choices for H,. To test whether the data are
consistent with a given H,, one needs an appropriate
method to produce the surrogates. For many inter-
esting choices of null hypotheses (for instance to test
noisy limit cycle behaviour), it is not clear how the
surrogates can be generated. Of course, given a finite
time series we can never be certain that it arises from
a deterministic system, but we can discredit a range of
specific models. As a result, it is always important that
the time series is taken in context. The mathematical
techniques do not take any account of what sort of
system the data comes from, but to obtain useful
information we need to construct relevant null hy-
potheses.

Other tests for determinism, such as dimension
calculations, have been used with surrogate data, and
it may be helpful to use more than one test because
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different tests are sensitive to different features in the
data (Theiler et al. 1992). However, nonlinear fore-
casting can be used with relatively short data sets; as a
result it may be the only nonlinear analysis method
available for short biological data sets. Although this
test has known weaknesses when applied to auto-
correlated time series which are typical in biology, the
ideas discussed in this paper enable conclusions to be
drawn more confidently from the test results.
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