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Estimation of viral parameters, such as the basic reproductive number (R0) and infected cell life span, is
central to the quantitative study of the within-host dynamics of viral diseases such as human immuno-
de¢ciency virus, hepatitis B or hepatitis C. As these parameters can rarely be determined directly, they
are usually estimated indirectly by ¢tting mathematical models to viral load data. This paper investigates
how parameter estimates obtained by such procedures depend on the assumptions made concerning the
viral life cycle. It ¢nds that estimates of the basic reproductive number obtained using viral load data
collected during the initial stages of infection can depend quite sensitively on these assumptions. The use
of models which neglect the intracellular delay before virion production can lead to severe underestimates
of R0 and, hence, to overly optimistic predictions of how e¤cacious treatment must be in order to prevent
or eradicate the disease. These results are also of importance for attempts at estimating R0 from similar
epidemiological data as there is a correspondence between within-host and between-host models.
Estimates of the life span of infected cells obtained from viral load data collected during drug treatment
studies also depend on the assumptions made in modelling the virus life cycle. The use of more realistic
descriptions of the life cycle is seen to increase estimates of infected cell life span, in addition to providing
a new explanation for the shoulder phase seen during drug treatment. This study highlights the
limitations of what can be learnt by ¢tting mathematical models to infectious disease data without
detailed independent knowledge of the life cycle of the infectious agent.
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1. INTRODUCTION

Our understanding of the within-host dynamics of viral
diseases such as human immunode¢ciency virus (HIV),
hepatitis B and hepatitis C has increased enormously with
the development of more sensitive techniques allowing for
the accurate measurement of viral load, even when the
virus is present at low levels. These advances have been
accompanied by a considerable theoretical e¡ort aimed at
extracting as much information as possible from longitu-
dinal studies of virus load within an individual. Many of
the viral parameters of interest cannot be obtained
directly and, thus, must be estimated indirectly, usually
by ¢tting mathematical models to viral load data.

Two particular kinds of study have yielded signi¢cant
information about virus replication. Drug treatment
studies, in which patients are treated with one or more
anti-viral agents, have led to estimates for the life span of
productively infected cells (Ho et al. 1995; Wei et al. 1995;
Nowak et al. 1996; Perelson et al. 1996, 1997; Bonhoe¡er
et al. 1997; Grossman et al. 1998; Mittler et al. 1998, 1999;
Neumann et al. 1998) and have unveiled an extremely
dynamic picture of infection with a rapid turnover of
infected cells and, hence, in order to maintain infection, a
large number of infection events per unit time. The
average life span of infected cells is central to the estima-
tion of the viral generation time which, together with the
mutation rate, determine the rate at which genetic diver-
sity is generated by the virusöan important issue for
diseases such as HIV as rapid viral evolution can lead to
the emergence of viral strains resistant to the particular

therapy being employed or to the generation of strains
which escape recognition by the immune system (Co¤n
1995).

Initial infection studies provided information about the
maximum possible rate of viral replication (Lifson et al.
1997; Nowak et al. 1997; Little et al. 1999) as measured by
the basic reproductive number R0 (Anderson & May
1991), which is de¢ned as the average number of
secondary infections that would be caused by the intro-
duction of a single infected cell into an entirely susceptible
population of cells. This quantity, which is familiar from
demographic and epidemiological theory, determines in
simple situations whether a disease can ¢rst invade a
population and then persist. In such situations, invasion is
only possible if R041 (see, for instance, ¢gure 5 in
Nowak et al. (1997)) and the same condition determines
persistence as the system reaches an equilibrium state
(the endemic equilibrium) at which the fraction of cells
which remain susceptible equals 1/R0.

A successful vaccination or therapy regime corresponds
to lowering R0 to below 1 by reducing the number of
secondary infections in some way. In an epidemiological
setting, standard theory shows that this can be achieved if
a fraction of pc ˆ 1¡ 1/R0 (or greater) of the susceptible
population is removed by vaccination (Anderson & May
1991). In general, we call the proportion of potential
secondary infections prevented by vaccination or therapy
the vaccination proportion.

Since the viral parameters are crucial in the design of
therapy and vaccination regimes, it is important to have
con¢dence in their estimated values. Underestimation of
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R0 is a serious problem as it leads to optimistic estimates
for the critical vaccination proportion. Use of such an
underestimate might lead us to believe that an imperfect
treatment would be e¡ective when the true value of the
parameter would indicate otherwise.

Statistical techniques can be used to express our uncer-
tainty in the estimates obtained using any particular
model. Here we ask a di¡erent question, namely the
sensitivity of parameter estimates to the assumptions
underlying the model being used. Whenever we formulate
a mathematical model, we simplify the underlying
biology. Clearly, it is important to know how much di¡er-
ence these assumptions make to parameter estimates.
Here we investigate the importance of the assumptions
made concerning the life cycle of the virus.

2. THE GENERAL MODEL OF VIRAL DYNAMICS

The basic model of viral dynamics (Ho et al. 1995; Wei
et al. 1995; Nowak et al. 1996; Perelson et al. 1996)
considers the interactions between target cells (x), produc-
tively infected cells ( y) and infectious free virus particles
(v). For the purposes of our study, it makes two important
assumptions. First, the term describing the removal (i.e.
death) of the infected cell population is given by their per
capita death rate a multiplied by the number of infected
cells. This is equivalent to assuming that the life span of
infected cells can be described by an exponential distribu-
tion with mean 1=a or, equivalently, that the probability
of an infected cell dying does not depend on the time
since infection. It is further assumed that infected cells
begin to produce free virions as soon as they are infected.

More realistic models consider a fuller description of
the virus life cycle (Levy 1998), which consists of a
number of di¡erent phases (cell entry, reverse tran-
scription, integration in the host cell genome, production
of early viral proteins, production of viral genomes and
late viral proteins and assembly and release of virions).
Initially, during the life cycle the death rate of cells is low
but later increases as a consequence of viral cytopatho-
genicity or cytotoxic T lymphocyte (CTL)-mediated lysis
(Klenerman et al. 1996). In reality, therefore, cell life
spans are more likely to be described by less-dispersed
distributions as cells are unlikely to die either long before
or long after the mean life span. Virion release only
begins part way through the life cycle as there is a delay
or lag phase between the entry of a virion into a cell and
the production of virions by the cell (Herz et al. 1996;
Nowak et al. 1997; Grossman et al. 1998; Mittler et al.
1998) and virion release may even be concentrated in a
short burst towards the end of the cell’s life.

Accounting for details of the life cycle clearly leads to a
more complex mathematical model as one has to keep
track of the time since each cell became infected. We use a
simple approach employing a mathematical device known
as the method of stages ( Jensen 1948; Cox & Miller 1965;
Grossman et al. 1998; Mittler et al. 1998; Lloyd 2001). In
its simplest form, the single compartment representing
the infected cell population is replaced by a set of n
subcompartments or stages with a newly infected cell
entering the ¢rst, then passing through each of the n
stages before dying (see ¢g. 1 in Grossman et al. (1998)).
The number of cells in each of these stages is denoted yj.

The amount of time spent in each stage is exponentially
distributed so the life span of the cells is described by the
sum of n exponential distributions. Here we deploy the
method of stages just as a mathematical device in order to
include more realistic distributions of cell life spans; the
stages do not correspond to biological phases of the cell’s
life cycle. In more complex models, stagesöor collections
of stagesöcould correspond to such phases.

The most general form of the model is given by

dx/dt ˆ l ¡ dx ¡ ­ xv, (1)
dy1/dt ˆ ­ xv ¡ a1 y1, (2)
dy2/dt ˆ p1a1 y1 ¡ a2 y2, (3)

..

.

dyn/dt ˆ p n¡1an¡1 yj¡1 ¡ an yn, (4)

and

dv/dt ˆ k1 y1 ‡ k2 y2 ‡ : : : ‡ kn yn ¡ uv. (5)

Here, the rate of virion production by infected cells in the
jth stage is kj, the average life span of a free virion is 1/u,
the average time that an infected cell spends in the jth
stage is 1/aj and p j is the chance that a cell which leaves
the jth stage passes into the j ‡ 1 stage. The coe¤cients p j

allow for the consideration of di¡erent assumptions
concerning the chance of cell death during di¡erent
stages of the viral life cycle. In all of what follows, we
shall take p j ˆ 1 for all j, corresponding to the notion that
infected cells only die as they leave the nth stage. We
de¢ne y to be the total number of infected cells.

This general framework contains most of the models
previously employed in the study of viral load data as
special cases and, thus, provides a unifying framework for
their analysis. For instance, if n is set equal to one, we
recover the basic model of virus dynamics. A lag phase,
modelling a delay between infection of cells and release of
infectious virions, can be considered by setting kj ˆ 0 for
the ¢rst m stages.

An assumption which we shall frequently make is that
free virus dynamics occur on a much faster time-scale
than infected cell dynamics. In the basic model, this is
equivalent to assuming that k and u are large. In this
case, a quasi-equilibrium is quickly established between
the free virus and infected cell populations, with
v(t) º ky(t)/u. The basic model reduces to the SIR
(susceptible^infectious^recovered) model, which is
familiar from epidemiology (Anderson & May 1991),
allowing us to make use of the extensive theory derived
for this model and its many variants.

One special case of particular interest occurs when the
same exponential distribution is employed for each stage,
in which case the overall life span is given by a gamma
distribution. This distribution is speci¢ed by its mean and
the parameter n. When n equals one, we recover the expo-
nential distribution of the simplest model but, as n is
increased, the distribution becomes more peaked with the
limit n ! 1 corresponding to all cells having exactly the
same life span (i.e. a delta distribution). In order to
compare models in the gamma- distributed case, we take
the average life span of infected cells to equal 1/a, which
means that, for an n stage model, the average time spent
in each stage is 1/(na). If we further assume that infected
cells in each stage release virions at the same rate (so that
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kj ˆ k, p j ˆ 1 and aj ˆ na), we have the simplest extension
to the basic model and it includes only one extra para-
meter, i.e. n, compared to the basic model.

3. INITIAL BEHAVIOUR OF THE BASIC MODEL

AND ESTIMATION OF R0

In the absence of infection, target cells reach an equili-
brium with x ˆ l/d. In order to study the initial beha-
viour after infection, we perturb this state by introducing
a small amount of virus. Over the initial period, since
there are few free virions and, hence, few infection events,
the target cell population remains approximately constant
at its pre-infection level. We assume that x ˆ l/d, a proce-
dure equivalent to the standard mathematical technique
of linearization. The model reduces to a set of linear
equations, from which an expression for the initial rate of
viral growth (r) can be derived.

An expression for R0 in the basic model can be easily
obtained since the number of new infections due to a
single infected cell is given by multiplying the number of
free virions released over the infected cell’s life span by
the number of cells infected by each free virion over its
life span (Nowak et al. 1996; Bonhoe¡er et al. 1997). This
gives

R0 ˆ
­ lk
adu

: (6)

Linearization of the model shows that the initial rate of
viral growth r (Nowak et al. 1997) is given by
r2 ‡ (a ‡ u)r ¡ au(R0 ¡ 1) ˆ 0 and, assuming that free
virus dynamics occurs on a faster time-scale than infected
cell dynamics, this expression simpli¢es to one which is
familiar from epidemiology (Anderson & May 1991), i.e.

r ˆ a(R0 ¡ 1). (7)

Thus, R0 can be estimated from the initial rate of increase
of viral load and the average life span of infected cells.

4. THE ESTIMATION OF R0 IN MORE REALISTIC

MODELS

The de¢nition of R0 is una¡ected by issues of life span
distribution and the timing of virion release since R0 only
depends on the total amount of infectious virions released
over the whole life cycle and the number of newly infected
cells which arise from each virion. Equation (6) for R0

holds for all models parameterized so that the average
number of virions released over the life span of an
infected cell is k/a. However, the initial growth rate of a
virus does depend on life cycle assumptions (Heesterbeek
& Dietz 1996) and this has important implications in the
estimation of R0.

We assume that the virus life cycle can be modelled by
a lag phase which is described by an m-stage gamma
distribution with average duration 1/c, followed by a
virion production phase which is described by an n stage
gamma distribution with average duration 1/a. We
further assume that virions are produced at a constant
rate during this latter phase with an average of k/a
virions released by each infected cell and that free virus
dynamics occurs on a fast time-scale.

Anderson & Watson (1980) showed that the initial rate
of viral increase r satis¢es

aR0 1 ¡ r
na

‡ 1
¡n

ˆ r 1 ‡
r

mc

m
. (8)

We now consider two special cases in order to illustrate
the implications of life cycle assumptions on the estima-
tion of R0 from the initial behaviour of the infection.

(a) A model with non-exponential infected cell life
spans

We ¢rst consider the simplest extension to the basic
model, di¡ering only in that the infected cell life span is
gamma rather than exponentially distributed. Letting the
duration of the intracellular delay 1/c tend to zero in
equation (8) gives (Lloyd 1996)

r ˆ aR0 1 ¡
r
na

‡ 1
¡n

. (9)

Keeping R0 ¢xed, less-dispersed distributions of infected
cell life spans lead to a more rapid initial increase in viral
load (¢gure 1) (Anderson & Watson 1980; Malice &
Kryscio 1989; Lloyd 1996; Keeling & Grenfell 2000). In
order to obtain the same growth rate in both the basic
(exponential) and more realistic models, one needs a
larger value of R0 in the exponential case. This means
that use of equation (7) for estimating R0 from the initial
growth rate overestimates the value of R0 when the distri-
bution is less dispersed than the exponential, as is the
case in reality (Lloyd 1996; Keeling & Grenfell 2000).
The overestimate is greatest for the least-dispersed distri-
butions and it is possible to show numerically that the
greatest overestimate of R0 is 29.8%, which occurs with a
life span of ¢xed length (i.e. n ! 1) and when R0 º 2:1.
Such overestimates lead to conservative estimates for
critical vaccination fractions; in other words, they lead us
to believe that a given treatment might not work when in
reality it would.

(b) A model with a latent period
We now allow for a non-zero intracellular delay but, in

order to simplify matters, we assume that the period of
virion production is described by an exponential distribu-
tion of average duration 1/a. This model is identical to
those used by Grossman et al. (1998) and Mittler et al.
(1998) in studying data from drug treatment studies.
Setting n ˆ 1 in equation (8) leads to the following
expression for the initial growth rate of the virus:

r ˆ a R0 1 ‡
r

mc

¡m
¡1 . (10)

In the case of an exponential delay (i.e. m ˆ 1) this
implies that R0 ˆ 1 ‡ (r/a)‰1 ‡ (r ‡ a)/cŠ (Nowak et al.
1997) and for a ¢xed delay (m ! 1) that R0 ˆ (1 ‡ r/a)
exp(r/c) (Nowak et al. 1997). As the delay becomes shorter
(1/c ! 0), the relationship (equation (7)) from the delay-
free model is recovered.

Keeping R0 ¢xed, the inclusion of a delay phase causes
a reduction in the initial growth rate, with larger reduc-
tions obtained for less-dispersed delays (¢gure 1b). Rein-
terpreting this observation in terms of R0, we see that, in
order to maintain the same initial growth rate, one needs
a larger R0 if a delay is included and R0 must be higher
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still with a less-dispersed delay. The simplest relationship
between r and R0, as provided by equation (7), signi¢-
cantly underestimates R0 if a delay is not accounted for
and this problem is worse for less-dispersed delays. As
discussed earlier, the underestimate would lead to an
overly optimistic estimate of pc and, therefore, the critical
vaccination coverage predicted by the basic model would
not be enough to control infection.

As an example, Nowak et al. (1997) presented initial
viral load data for simian immunode¢ciency virus infec-
tion in macaques. An initial growth rate of 2:2 day¡1 was
observed for one individual. Using estimates for a
obtained from drug treatment studies, the standard
model of virus dynamics gives an estimate of 4.0 for R0.
Employing a delay model with a one-day lag between
infection and production of virions increases the R0

estimate to 13 (exponential delay) or 36 (¢xed delay).
Smaller di¡erences were seen for either individuals with
lower growth rates or if a shorter delay was assumed.

Clearly, that estimates of R0 can depend so sensitively
on the model chosen is deeply troubling. In an instance
such as this, it would be foolish to use this method unless
we have a very good quantitative description of the infec-
tious agent’s life cycle. Since, despite many advances in
recent years, we still do not have such a description of the
HIV life cycle, estimates of R0 from initial viral growth
data must be treated with more than a little caution.

5. MODEL BEHAVIOUR NEAR EQUILIBRIUM

AND DRUG TREATMENT

As the progess of the infection continues, the number of
target cells drops and the rate of increase of virus
decreases. Eventually an equilibrium is reached in which
balances are reached between the production and
removal of target cells and between the production and
removal of infected cells. At this equilibrium, the number
of target cells is given by l/(dR0), i.e. the number of
target cells at the disease-free equilibrium divided by R0

(Nowak et al. 1997). This provides an alternative way of
estimating R0 if one can measure the size of the target
cell population both before infection and once the post-
infection equilibrium has been established.

Although, like R0, this equilibrium level does not
depend on the assumptions made concerning the viral life
cycle, the dynamics of the model as it approaches the
equilibrium (as measured, for instance, by the damping
time of the oscillations about the equilibrium) are depen-
dent on these assumptions (¢gure 1) (Grossman 1980;
Culshaw & Ruan 2000; Lloyd 2001). Studies which use
viral load data obtained as the system approaches equili-
brium (e.g. Sta¡ord et al. 2000) must take this into
account if we are to have con¢dence in the parameter
estimates they obtain.

Anti-retroviral drug therapy often consists of the
administration of a combination of reverse transcriptase
inhibitors and protease inhibitors. A reverse transcriptase
inhibitor essentially prevents infection of new cells; thus,
its e¡ects can be modelled by setting ­ equal to zero. A
protease inhibitor prevents already infected cells from
producing infectious virions; instead the virions released
are non-infectious. Models for the e¡ects of protease inhi-
bitors alone should consider both infectious and non-
infectious virions (Perelson et al. 1996)öwe do not
discuss this simple modi¢cation in detail here.

We imagine that the populations have reached their
equilibrium levels before the initiation of drug therapy at
time t ˆ 0 and that the e¡ect of therapy is to prevent
further infection events. It is clear from equations (1)̂ (5)
that, in order to model viral load upon treatment, only
the infected cell and free virus populations need be
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Figure 1. Initial behaviour and approach to the equilibrium
in the model when di¡erent assumptions are made concerning
the viral life cycle. (a) Model with gamma-distributed cell
life spans. The solid line corresponds to n ˆ 1 (i.e. exponen-
tial), the dashed line to n ˆ 2 and the dotted line to n ˆ 5. In
each case, the average life span of the infected cell is taken to
be two days and R0 is taken to be 5. The inset highlights the
initial behaviour and the increasing growth rate seen as n
increases. Notice also the less rapid approach towards the
equilibrium seen for larger values of n. (b) Model with various
latent periods and with the duration of virion production
being exponentially distributed with mean two days. In each
case, R0 is taken to be 5. The solid line corresponds to no
latent period (i.e. the solid line in (a)), the dashed line to a
one-day, exponentially distributed latent period and the
dotted line to a one-day, ¢ve-stage, gamma-distributed latent
period. The solid line with symbols corresponds to a two-day,
exponentially distributed latent period and the dashed line
with symbols to a two-day, ¢ve-stage gamma-distributed
latent period. Notice that the changes in the initial growth
rate are larger than seen in (a) and that the approach to the
equilibrium again depends on the life cycle assumptions.



followed and that these populations decline according to
a linear model.

For the basic model, the free virus decline is given by
(Wei et al. 1995; Bonhoe¡er et al. 1997)

v(t) ˆ v¤(ue¡at ¡ ae¡ut)/(u ¡ a), (11)

where v¤ is the equilibrium viral load.
Assuming that the life span of free virions is much

shorter than that of infected cells, one observes an initial
shoulder phase, the duration of which is on the time-scale
of 1/u, followed by an exponential decline at rate a. The
observed decay of free virus can therefore be used to esti-
mate a and, hence, the life span of infected cells. Further-
more, it has been suggested that the shoulder phase can
be used to estimate u, the free virion life span. Pre-
empting the discussion which follows, however, Herz et al.
(1996) noted that such estimates of u are sensitive to the
inclusion of pharamacological and intracellular delays.

(a) Estimation of infected cell life span using the
more realistic model

In this section, we use the simplest extension to the basic
model, with a gamma distribution of infected cell life spans
and with equal production of virions by each stage.
Grossman et al. (1998) employed a similar model, but
within the context of imperfect drug treatment and their
discussion focuses on the e¡ects of imperfect drug treatment
rather than of non-exponential life spans (see the comments
below). Notice that this extension di¡ers from previous
models, such as that of Mittler et al. (1998) which deployed
gamma distributions for the intracellular delay, but
assumed that the period of virion production was exponen-
tially distributed. In the n ˆ 2 case it is easily shown that

v(t) ˆ
v¤

(u ¡ 2a)2 fu‰(u ¡ 3a) ‡ at(u ¡ 2a)Še¡2at

‡ a(4a ¡ u)e¡utg. (12)

This is no longer simply the sum of exponentials (mathe-
matically, this occurs because the linearization leads to
repeated eigenvalues): the exponential exp(¡ 2at) is
multiplied by a ¢rst-order (i.e. linear) polynomial in t.
For large enough t, the decay of v(t) is dominated by the
exponential term, i.e. the virus decays at rate 2a.
Comparing this with the decay at rate a seen in the basic
model, the drug-induced decay of free virus can be seen
to be more rapid in the more realistic model (¢gure 2).

It is possible to obtain analytical solutions for the more
general model with larger values of n (see also Mittler
et al. 1998), but these quickly become unwieldy and are
not shown here. The important point is that the decay is
dominated by a term proportional to exp(¡ nat). Thus, it
is a general result that the use of more realistic models
leads to more rapid decay of infected cells (¢gure 2).
Moreover, the polynomial which multiplies this exponen-
tial term, which is of order n ¡ 1, leads to a lengthening
of the shoulder phase as n increases (¢gure 2).

Turning to the inverse problem of the estimation of
infected cell life spans from an observed decay in free virus
following drug therapy, since the rate of viral decay in the
more realistic model gives an estimate for na (as opposed to
a in the basic model), the estimated value of a will be
smaller in more realistic models, leading to longer estimates

for infected cell life spans. Furthermore, the new model
o¡ers an alternative explanation for the shoulder phase: in
addition to re£ecting free virus dynamics, it also in part
arises from non-exponential infected cell life spans. (Notice
that increased estimates of infected cell life span are due to
the more complex relationship between the half-life of viral
decay and the life span of infected cells within the more
realistic framework; they do not lead to a lengthening of
the predicted time taken to clear the virus, as obtained by
extrapolating the curve of viral load versus time.)

Whilst the decay is no longer strictly exponential, it may
be impossible to distinguish it from an exponential, parti-
cularly for experimental data which are subject to noise.
This is illustrated in ¢gure 3 in which various models are
¢tted to a viral load decay curve obtained upon treatment
with a protease inhibitor (Perelson et al. 1996). (As the
treatment study from which these data were obtained used
a protease inhibitor alone, we used the more complex
model formulation involving non-infectious and infec-
tious free virions, as mentioned above.)

As our purpose here is to point out the ways in which
life cycle assumptions can a¡ect viral parameter estimates
rather than making detailed parameter estimates, our
illustration only involves data from a single patient. The
models with n equal to 2 or 3 actually ¢t the data better
for this patient than the basic model, whereas the ¢t with
n ˆ 5 is worse. Whilst there are systematic di¡erences
between the curves obtained from the di¡erent models,
the quality of the available data makes it di¤cult to
di¡erentiate statistically between the di¡erent model ¢ts.
The important point is that the use of more realistic
life cycles tends to increase the estimated life span,
although it is interesting to note that these increases lie
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Figure 2. Viral load decay curves obtained from the basic
(solid line) and more realistic models using gamma
distributions with n ˆ 2 stages (dotted line), n ˆ 5 stages
(dotted-dashed line) and n ˆ 10 stages (dashed line). The
other model parameters are taken to be a ˆ 0:5 day¡1 ,
u ˆ 30 day¡1 and k ˆ 30 day¡1. The system is in equilibrium
at time t ˆ 0 in each simulation and, in order to have the
same equilibrium virus load in all three simulations, the basic
reproductive ratio R0 is taken to be the same. Notice that the
parameters chosen imply that the dynamics of free virus occur
on a fast time-scale: the shoulder phase mainly arises for these
parameter values because of the non-exponentially distributed
cell life spans.



below the theoretical maximum increase, presumably
because the increased length of the shoulder phase in
more realistic models increases the time taken for the
decay rate to reach its asymptotic value. We also note that
estimates of u (the free virion clearance rate) are larger
when the new model is employed since the shoulder
phase is now attributed to the non-exponential distribu-
tion of cell life spans, as well as free virion dynamics. A
similar e¡ect was noted by Mittler et al. (1998) as the
less-dispersed intracellular delays they employed also led
to a lengthening of the shoulder phase.

A counter-intuitive consequence of the consideration of
non-exponential waiting times in di¡erent phases of the
viral life cycle is that the virus decay need no longer
re£ect the slowest phase of the life cycle. If n is large
enough it can be the case that na4u, in which case the
free virus dynamics can dominate the overall virus decay,
even though u ¾ a. We notice that a similar argument
explains why the ¢xed-length intracellular delay (i.e.
corresponding to n tending to in¢nity) employed by Herz
et al. (1996) did not a¡ect the rate of virus decay observed
in their model, even in the case when the intracellular
delay was longer than the time-scale over which cell

death occurs. We remark that this behaviour would not be
observed if an exponential delay phase (or any other
distribution with moderate dispersion) were employed.

In order to investigate the e¡ect of the timing of free
virion production on viral decay rates, we relax the
assumption that free virions are produced continuously
and instead assume that virions are only released during
the ¢nal stage. (Of course, this life cycle could alterna-
tively be described as a gamma-distributed latent phase,
followed by an exponentially distributed phase of virion
release (Grossman et al. 1998; Mittler et al. 1998).) In
order to make a fair comparison, we keep the total virion
production per infected cell constant, which means that kn

is taken to equal nk whilst all other kj are zero. This modi-
¢cation is seen to have no e¡ect on the asymptotic decay
of free virus, but it further lengthens the shoulder phase
(¢gure 4). (This result is predicted by analysis of the
model as the kjs do not a¡ect the decay rates obtained
upon linearization of the model, whereas the factors
which multiply the exponential terms are dependent on
kj.) Thus, in general, the shoulder seen in virus decline
re£ects more than just free virion dynamics and the intra-
cellular delay, as it also re£ects the convolution of the
infected cell life span distribution with the distribution
describing timing of virion release (only part of which
re£ects the intracellular delay). We suggest that, without
much more detailed independent biological information
concerning these distributions, it is unlikely that viral
parameters can be estimated with a high degree of con¢-
dence from the shoulder phase.

6. DISCUSSION

In this study, we have only considered the changes
which result simply from relaxing the assumptions made
by the basic model concerning the life cycle of the virus.
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Figure 3. Example of viral load decay seen upon treatment
with a protease inhibitor (Perelson et al. 1996), together with
model ¢ts obtained using the basic model (solid line) and the
more realistic model with n ˆ 2 (dotted line) and n ˆ 5
(dashed line). In each case, a modi¢ed form of the model
appropriate for the action of protease inhibitors alone
(Perelson et al. 1996) was ¢tted by nonlinear least-squares
regression (Press et al. 1986). In addition, in each case, a
pure delay time t, which was intended to represent the
pharmacological delay, but which could also model a pure
intracellular delay (Herz et al. 1996), was also allowed for
when ¢tting the data. The ¢tted parameters for the basic
model were a ˆ 0:494 day¡1 , u ˆ 2:6 day¡1 and t ˆ 0 days,
those for the realistic model with n ˆ 2 were a ˆ 0:322 day¡1,
u ˆ 50 day¡1 and t ˆ 0:419 days, those for the realistic model
with n ˆ 3 (curve not shown) were a ˆ 0:266 day¡1 ,
u ˆ 50 day¡1 and t ˆ 0:227 days and those for the realistic
model with n ˆ 5 were a ˆ 0:221 day¡1, u ˆ 50 day¡1 and
t ˆ 0:101 days. These parameters correspond to estimated
average infected cell life spans of 2.02, 3.10, 3.76 and 4.52
days (basic model and realistic model with n ˆ 2, 3 and 5,
respectively). The parameter u was constrained to be no
greater than 50 in the model ¢tting process.
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Figure 4. Viral load decay curves for models in which virions
are released at a constant rate over an infected cell’s life span
(solid curves) and in which virions are released in a single
burst at the end of an infected cell’s life (dotted curve). This
makes no di¡erence to the behaviour of the basic model (solid
curve without symbols), but increases the length of the
shoulder phase, without changing the ¢nal decay rate, in
the more realistic model (curves with squares, obtained from a
ten-stage model). The parameter values are a ˆ 0:5 day¡1 and
k ˆ u ˆ 10 day¡1.



The inclusion of other biological details leads to yet more
complex models and may have an even more important
impact on parameter estimates obtained from viral load
data. For instance, within the context of drug treatment
studies, the inclusion of an explicit immune response or the
trapping of virus particles by cells, such as follicular
dendritic cells, have both been shown to have important
e¡ects on estimates of cell life spans (Arnaout et al. 2000;
Hlavacek et al. 2000).

In the preceding discussion of the e¡ects of anti-viral
therapy, it was assumed that drug treatment was perfect,
totally preventing ongoing viral replication. In the case of
HIV, where there is considerable evidence for ongoing
viral replication, even when drug therapy has reduced the
viral load to below the detection limit of current assays
(see Ramratnam et al. (2000) and references therein), this
assumption is clearly incorrect. From a modelling stand-
point, this complicates the picture considerably, as the
equations for infected cells and free virus no longer
decouple from the target cell equation and, thus, the
dynamics of the target cell population must be considered.
Furthermore, ongoing replication reduces the rate of virus
decline below that which would be observed if drug treat-
ment were completely e¡ective. Consequently, life span
estimates obtained using models which assume complete
blocking of infection will overestimate the true life span
(Perelson et al. 1996; Grossman et al. 1998; Ding & Wu
1999; Nelson et al. 2000). Notice, however, that our obser-
vation that non-exponential life spans can lead to decay
curves consistent with an exponential decay argues against
the reasoning of Grossman et al. (1998), who suggested that
the knowledge that life spans are not exponentially distrib-
uted meant that another explanation was needed for the
exponential decay kinetics of free virus, namely that
infection is ongoing in the face of drug treatment.

An important issue that is often inadequately addressed
is whether the basic model can adequately describe both
the initial behaviour of the infection and the equilibrium
behaviour using the same set of parameters (see, however,
Sta¡ord et al. 2000). This in turn has important implica-
tions for estimation of viral parameters and their use in
the design of control and prevention strategies. For
instance, estimation of R0 from initial viral load data
makes use of the infected cell life span estimate obtained
from drug treatment studies. This assumes that the
average life span of infected cells is the same during the
initial stages of infection as it is when the equilibrium
state has been reached. If cell death is largely due to virus
cytopathicity this should be the case, assuming that there
are no major changes in the virulence of the virus. If cell
death is largely due to speci¢c immune responses, such as
killing by CTL, this will be a poor approximation as
speci¢c immune responses are likely to be weak during
initial infection. Furthermore, the basic model assumes
that target cell dynamics are essentially the same during
all stages of infection. In the case of HIV, several types of
immune cells can be infected, including macrophages and
activated CD4 T cells. Di¡erent virus strains can prefer-
entially infect di¡erent target cell pools and, with the
evolution of the virus, the importance of di¡erent cell
pools could change over time. In order to allow produc-
tive infection, CD4 T cells must be activated, raising the
possibility that this pool of target cells could increase in

size upon initial infection. Models which account for
these and other phenomena which the basic model does
not capture have been developed (see, for instance,
McLean & Kirkwood 1990; McLean & Nowak 1992; De
Boer & Perelson 1998; Murray et al. 1998; Callaway et al.
1999; Wodarz et al. 1999), but their behaviour is often
much more complex and they do not inherit many of the
simple properties of the basic model. Crucially, the condi-
tion R041 may not determine invasion and persistence
(see also Doebeli 1998; Dusho¡ 1996). In some situations,
the invasion process cannot be captured by a linear
model. Whether an infectious dose leads to the establish-
ment of disease can depend on the size of the dose
(Wodarz et al. 1999). Alternatively, if the death rate of
infected cells depends on an immune response which can
develop over time, a virus can initially invade before later
being eradicated by the immune response.

Assumptions made concerning the viral life cycle can
clearly have an important e¡ect on estimates of viral
parameters obtained by ¢tting mathematical models to
viral load data. We have seen here that model mis-
speci¢cation can have an e¡ect which is considerably
larger than the uncertainty in parameter estimates which
arises from noise in the data. Whilst this latter source of
error can be addressed by statistical techniques, this study
suggests that our lack of detailed understanding of the
biological details of the virus life cycle poses a much
greater constraint on parameter estimation. One issue of
particular importance is the question of parameter
identi¢ability; the above discussion of the shoulder phase
during drug treatment shows that many factors in£uence
this phase of the decay. Without additional independent
information, we suggest that, in practice, it is very di¤-
cult to disentangle these e¡ects in order to describe free
virus dynamics, the distribution of life spans of infected
cells and the timing of virion production separately. To
conclude, whilst the study of viral load data has provided
much important information on the dynamics of viral
diseases, care must be taken to avoid its over-
interpretation when detailed information concerning the
viral life cycle is not available.
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