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Most mathematical models used to understand the dynamical patterns seen in the incidence of childhood
viral diseases, such as measles, employ a simple, but epidemiologically unrealistic, description of the
infection and recovery process. The inclusion of more realistic descriptions of the recovery process is
shown to cause a signi¢cant destabilization of the model. When there is seasonal variation in disease
transmission this destabilization leads to the appearance of complex dynamical patterns with much lower
levels of seasonality than previously predicted. More generally, this study illustrates how detailed
dynamical properties of a model may depend in an important way on the assumptions made in the
formulation of the model.
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1. INTRODUCTION

Detailed studies of childhood viral disease incidence
records have uncovered a wealth of fascinating dynamical
patterns (London & Yorke 1973; Olsen & Scha¡er 1990;
Bolker & Grenfell 1993, 1995). Before the introduction of
mass vaccination in the 1960s, measles incidence in large
cities in the developed world exhibited recurrent
epidemics. The most common of these patterns is the
biennial cycle, with large outbreaks occurring every two
years, but both annual and triennial behaviours are also
seen (London & Yorke 1973; Bolker & Grenfell 1995). In
many cases, the oscillations are less regular than those
observed in other biological systems: although there is a
de¢nite multi-annual pattern, there can be considerable
£uctuation in the sizes of the epidemics (Olsen & Scha¡er
1990). Understanding the nature and origins of such
epidemic behaviour has been of considerable interest to
mathematical epidemiologists, as witnessed by the large
literature in which the dynamics of epidemic models have
been studied in great detail (Bartlett 1956; London &
Yorke 1973; Dietz 1976; Grossman 1980; Schwartz &
Smith 1983; Smith 1983a,b; Aron & Schwartz 1984;
Schwartz 1985, 1992; Olsen & Scha¡er 1990; Bolker &
Grenfell 1993, 1995; Kuznetsov & Piccardi 1994; Engbert
& Drepper 1994; Lloyd & May 1996; Keeling & Grenfell
1997; Earn et al. 2000).

The simplest models for childhood viral diseases
exhibit damped oscillations towards an endemic equili-
brium. These models, with the use of realistic parameter
values, correctly predict that the damped oscillations
occur on a time-scale of several years, but are unable to
reproduce the recurrent epidemic pattern. Epidemio-
logical studies (London & Yorke 1973; Fine & Clarkson
1982) reveal that the epidemic process is subject to
considerable seasonal forcing; schools are major centres
for the transmission of childhood diseases, and conse-
quently transmission rates are much higher during school
terms than during vacations. Seasonality can allow for
the maintenance of recurrent epidemics within the model
framework as it p̀umps’ the damped intrinsic oscillations.

Low levels of seasonality lead to annual oscillations in
incidence, but longer period oscillations can arise with
stronger forcing (Dietz 1976; Smith 1983a,b; Aron &
Schwartz 1984). More complex behaviours, such as deter-
ministic chaos or intermittent behaviour can arise when
the levels of seasonality are quite high (Olsen & Scha¡er
1990; Engbert & Drepper 1994). These behaviours mimic
many features of the incidence record, although it is not
clear to what extent they provide a complete mechanistic
explanation for them.

Most of the models employed in these studies of the
dynamics of epidemics have employed a simple descrip-
tion of the disease process. One particular assumption
made is that the time for which individuals remain infec-
tious can be described by an exponential distribution.
This distribution is biologically unrealistic, however,
because it corresponds to the assumption that the chance
of recovery in a given time interval is independent of the
time since infection. This leads to the distribution of infec-
tious periods being too dispersed. In reality, infectious
periods are fairly closely centred about the mean duration
of infection; the infectious period is unlikely to be either
considerably shorter or considerably longer than the
mean. Although non-exponential descriptions of the
infectious period distribution have long been incorporated
in models of long-lived infections, such as human immuno-
de¢ciency virus (HIV) (Blythe & Anderson 1988;
Castillo-Chavez et al. 1989), it has commonly been
believed that the description of the infectious period has
little e¡ect in models for short-lived infections (see,
however, Grossman 1980; Lloyd 1996; Keeling & Grenfell
1997).

In this paper we consider the dynamical changes which
result from the inclusion of non-exponential descriptions
of the infectious period. After discussing modi¢cations of
the basic model which allow for the inclusion of such
distributions, we discuss their e¡ects on both unforced
and seasonally forced models. In the unforced case, we
use analytical and numerical techniques to generalize the
work of Grossman (1980) and demonstrate that such
distributions lead to destabilization of the endemic
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equilibrium, with an increased time for damping of the
intrinsic oscillations. In the forced case, we use numerical
bifurcation analysis techniques to demonstrate that lower
levels of seasonality are required to achieve biennial
cycles in the more realistic model. Similarly, more
complex dynamics can be achieved with much weaker
forcing in more realistic models than in the basic model.

2. THE MODEL

In the standard susceptible, infected, recovered (SIR)
model (see, for instance, Anderson & May (1991), for a
full discussion of the model), the term describing the
recovery of infective individuals is simply given by the
product of the number of infectives, written as I, and the
per-capita recovery rate, written as ®. This corresponds
to assuming that the infectious periods are exponentially
distributed, with mean duration of infection D equal to 1/
®.

The general infectious period distribution is described
by its probability density function, f (t), which gives the
probability of an individual infected t time-units ago
recovering in the time interval (t, t ‡ dt) as f (t)dt. This
density function can be integrated to give the survivorship
function,

F s( y) ˆ
1

y
f (t)dt, (1)

which gives the probability that an individual remains in
the infectious class for at least y time-units, given that
they have not ¢rst died. Notice that the survivorship
function is unity minus the cumulative density function
corresponding to f (t). Throughout what follows, to
enable comparison between models which di¡er in their
distributions of infectious periods, the mean duration of
infection D will always be taken to be 1/®.

The inclusion of non-exponential distributions means
that the chance of recovery depends on the time since
infection, and hence the model needs to keep track of this
information. Although this can be achieved in several
ways, in this study we shall focus on a particularly simple
formulation, involving the method of stages (Cox &
Miller 1965; Anderson & Watson 1980; Lloyd 1996)
because the resulting model is more amenable to analysis
and numerical simulation. Alternative formulations
include an integro-di¡erential equation (IDE) formula-
tion (Hethcote & Tudor 1980; Keeling & Grenfell 1997)
or a partial di¡erential equation (PDE) formulation (as
employed in age-structured models; see, for instance,
Anderson & May 1991). Further details can be found in
electronic Appendix A available on The Royal Society’s
Web site.

Using the method of stages, the single infective class of
the basic model is replaced by a series of n classes, or
stages, arranged in series. Newly infected individuals
enter the ¢rst stage before passing through each succes-
sive stage, with recovery corresponding to leaving the nth
stage. If the time spent in each stage is assumed to be
exponentially distributed, and the numbers of infectives
in each stage are written Ij, then the rate at which infec-
tives pass from the jth to the ( j ‡ 1)st stage is simply
proportional to Ij. The total time spent in the n classes is

given by the sum of n independent exponential distribu-
tions. If the average waiting time in each stage is
identical, this leads to a gamma distribution of infectious
periods, the density function of which can be written

f (t) ˆ
(®n)n

¡(n)
tn¡1e¡®nt , (2)

Here, ¡(n) is the gamma function. The variance of this
distribution is 1/(n®2). Notice that both the exponential
and delta (¢xed duration) distributions are special cases
of the gamma distribution, corresponding to n ˆ 1 and
n ! 1, and that the gamma distribution is close to a
normal distribution for large n. The probability density
function of the gamma distribution is shown in ¢gure 1a
for n ˆ 1, n ˆ 5 and n ˆ 50 stages.

Use of the stage approach leads to the following modi-
¢ed version of the SIR model:

dS/dt ˆ ·N ¡ ·S ¡  SI ,

dI1/dt ˆ  SI ¡ (n®I1 ‡ ·),

dI2/dt ˆ n®I1 ¡ (n®I2 ‡ ·),

..

.

dIn/dt ˆ n®In¡1 ¡ (n®In ‡ ·).

(3)

Here it is assumed that the disease is non-fatal and
confers permanent immunity upon recovery. S represents
the number of susceptible individuals, I the total number
of infectives, I ˆ n

jˆ1 Ij, and N the total population size.
The birth and death rates are taken to be equal, and
written as ·, leading to the total population size being
constant. Because the size of the population is constant,
the number of recovered individuals is given by
R ˆ N ¡ S ¡ I. We assume that the infection term can be
described by a mass-action term, with the transmission
parameter written as  . Notice that a situation in which
an individual’s infectiousness varies over the course of an
infection can easily be modelled by making the infection
term a weighted sum over the Ij.

To model the e¡ects of seasonal forcing, the  para-
meter is allowed to vary over the course of a year. Various
functional forms have been suggested for this annual
oscillatory term, ranging from simple phenomenological
forms through to detailed functions which accurately
model the opening and closing of schools across the year
(Dietz 1976; Schenzle 1984). We choose to employ the
simplest forcing term, namely the sinusoidal function

 (t) ˆ  0(1 ‡  1 cos 2ºt), (4)

where  0 is the baseline transmission parameter and  1

measures the strength of seasonality. Although less
realistic than many functional forms, this remains the
term most widely used in studies of the dynamics of SIR-
type models, and so its use facilitates comparison of our
results with those of other modelling studies.

3. RESULTS

(a) Unforced model
The dynamics of the unforced model are straightfor-

ward and are determined by the basic reproductive
number, R0, de¢ned as the average number of secondary
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infections produced by a single infective individual in an
entirely susceptible population (Macdonald 1952;
Anderson & May 1991). R0 is given by

R0 ˆ
 N
·

1

0
(1 ¡ e¡·t)f (t) dt, (5)

which is the product of the rate at which new infections
arise when a single infective is introduced into an entirely
susceptible population and the average duration of infec-
tiousness, corrected for mortality (Blythe & Anderson
1988). This expression can be rewritten in terms of the
survivorship function (Hethcote & Tudor 1980; Castillo-
Chavez et al. 1989)

R0 ˆ  N
1

0

F s(t)e¡·tdt: (6)

If R0 is less than unity, the infection dies out; the disease-
free equilibrium, for which S¤ ˆ N and I¤ ˆ 0, is globally
stable (Hethcote & Tudor 1980). If R0 is greater than unity,
the disease-free equilibrium is unstable whilst the endemic
equilibrium, for which S¤ ˆ N /R0 and I ¤ ˆ ·(R0 ¡ 1)/ ,

is locally asymptotically stable (Hethcote & Tudor 1980)
and is believed to be globally stable.

As the mean duration of infection is short compared to
the average life span (·D ½ 1), expression (5) for R0 can
be expanded as a series (Lloyd 1996), which, to ¢rst
order, gives

R0 ˆ  ND 1 ¡ ·D
2

f¼2/D2 ‡ 1g : (7)

Here, ¼2 is the variance of the distribution of infectious
periods. We notice that since the correction due to
mortality is small, the expression for R0 (and hence the
equilibrium values of S and I) does not depend much on
how infectious periods are distributed about their mean.
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Figure 1. (a) Probability density function for the gamma
distribution with n ˆ 1 (exponential), n ˆ 5 and n ˆ 50
stages (solid, dashed and dot-dashed curves, respectively).
(b) Damping time (solid curve) and ratio of damping time
to period (dashed curve) for the damped oscillations in the
unforced SIR model with a gamma distribution of infectious
periods. Parameter values in the model are N ˆ 107

individuals,  ˆ 1000/N individual¡1 yr¡1, ® ˆ 100 yr¡1

and · ˆ 1/50 yr¡1.

4

( b)

3 . 5

3

2 . 5

2

1 . 5

1

A

0 . 5

0 . 1

s t r e n g t h  o f  s e a s o n a l i t y ,     
1

b
0 0 . 0 7 50 . 0 50 . 0 2 5

B C D

3 . 5

3 . 2 5

3

2 . 7 5

2 . 5

2 . 2 5

( a)

A

2

n
u

m
b

e
r

 o
f

 i
n

f
e

c
t

iv
e

s
, 

l
o

g
1

0
 I

B C

Figure 2. Parametric portraits for the seasonally forced basic
SIR model (n ˆ 1), showing the number of infectives at yearly
intervals (times t ˆ 0, 1, 2, : : : ) for various strengths of
seasonality,  1. Solid curves denote stable solutions, dashed
curves unstable solutions. The heaviest lines denote annual
oscillations, the medium curves represent biennial cycles and
the faintest curves denote four-yearly cycles. (a)  0 ˆ 500/N .
A simple period doubling cascade is observed, as described in
½ 3(b). (b)  0 ˆ 750/N . A more complex bifurcation sequence
is observed, with the appearance of biennial cycles by a
tangent bifurcation. Notice the coexistence of stable annual
and biennial cycles between points A and B. The period two
solution undergoes a period doubling bifurcation at point C,
giving rise to a stable four-yearly cycle, which itself undergoes
a period doubling bifurcation at D. Other parameter values
are N ˆ 107 individuals, ® ˆ 100 yr¡1 and · ˆ 1/50 yr¡1.
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Figure 3. Bifurcation diagram for the seasonally forced SIR model. (a) Basic model, n ˆ 1. (b) More realistic model, n ˆ 5.
Solid lines represent period doubling (£ip) bifurcations, dashed lines represent tangent (saddle-node) bifurcations. The black
curve traces out the parameter values at which period doubling of the annual cycle occurs. The dashed blue curve, which
meets the black curve at its minimum, denotes the set of parameter values at which a tangent bifurcation creates a pair of
biennial cycles. These two bifurcations are discussed at greater length in ½ 3(b). Other bifurcations can occur involving
annual or biennial cycles. The orange dashed curve denotes another set of tangent bifurcations which can occur involving
biennial cycles. (This curve and the blue dashed curve have a common end-point at a value of ( 0,  1) outside the region
shown on this diagram.) The red and green curves denote period doubling bifurcations of biennial cycles, which involve
four-yearly cycles. Finally, the cyan and magenta dashed curves are two sets of tangent bifurcations which create (and destroy)
pairs of annual cycles. Other parameter values are as in ¢gure 2.



The approach to the equilibrium can be described by
linearizing the model, substituting S(t) ˆ S¤ ‡ s(t) and
I ˆ I¤ ‡ k(t) and giving the small perturbations time
dependence exp(Lt). This leads to an equation which
determines the values of L. The value of L which
describes the approach to the equilibrium is obtained as
the dominant root (i.e. the one with largest real part) of

L ‡ · ‡  I ¤ ¡  S¤f1 ¡ G(L ‡ ·)g ˆ 0 (8)

(Hethcote & Tudor 1980; Lloyd 1996), where

G(L ‡ ·) ˆ
1

0

f (t)e¡(L‡ ·)tdt. (9)

In the case of the gamma distribution, it is easy to see
that

G(L ‡ ·) ˆ f1 ‡ (L ‡ ·)/(n®)g¡n. (10)

Special cases of expression (10) are the exponential
case (n ˆ 1), for which G(L ‡ ·) ˆ ®/(L ‡ · ‡ ®), and
the delta case (n ! 1), for which G(L ‡ ·) ˆ expf¡(L
‡ ·)/®g. In the former case, expression (8) determining
stability reduces to the familiar expression which
describes the stability of the endemic equilibrium of the
standard SIR model (Anderson & May 1991). In this
case, it is well known that the damping time is approxi-
mately 2A and that the period of oscillation is approxi-
mately 2º(AD)1=2, where A is the mean age at infection
(which is approximately equal to L/R0) and D is the
mean duration of infection. In the delta case, the expres-
sion determining stability reduces to

(L ‡ ·) ‡  I ¤ ¡  S¤e¡(L‡ ·)=® ˆ 0, (11)

as obtained by Grossman (1980) (although notice that
there is a typographical error in his equation 2.6b).

The stability result of Hethcote & Tudor (1980) shows
that L has negative real part, and numerically it is found
that, at least for realistic parameter values, L is complex.
The equilibrium, therefore, is approached via damped
oscillations. Figure 1b shows the damping time and ratio
of the damping time to the period of the oscillations.
Both properties of the oscillations, in marked contrast to
R0, do vary considerably as the parameter n of the
gamma distribution is varied. In particular, in a general-
ization of the previously observed result for a ¢xed dura-
tion of infection (Grossman 1980), the damping time
increases as n increases; the endemic equilibrium is less
stable for less dispersed (i.e. more realistic) distributions
of the infectious period.

More realistic distributions destabilize the endemic
equilibrium, although not enough to lead to more
complex dynamical behaviour. Such destabilization has
important consequences for persistence properties of
stochastic variants of the SIR model (Lloyd 2001a).
Because, as is well known, stochastic e¡ects can exert a
larger e¡ect on less stable systems, we would expect to see
an increase in the chance of extinction with the inclusion
of more realistic distributions in stochastic models. This
has been observed numerically and is explored in more
detail using analytical approaches elsewhere (Lloyd 1996,
2001a; Andersson & Britton 1997, 2000).

(b) Forced model
With the inclusion of seasonality, the endemic equili-

brium loses its stability. When the forcing amplitude is
small, the system undergoes annual oscillations about the
endemic equilibrium, but as the strength of seasonality is
increased a wide range of dynamic behaviours can be
observed (Dietz 1976). Multiple attractor behaviour,
when more than one long-term behaviour is possible for a
given set of parameters, is commonly seen (Grossman
1980; Smith 1983a,b; Schwartz 1985). In such cases, the
behaviour of the model depends not only on its parameter
values, but also on the initial numbers of susceptibles and
infectives. Set against this complex background, the
notion of s̀tability’ is somewhat di¤cult to assess. One
possible measure, which we shall employ here, is the ease
with which seasonality can give rise to a particular dyna-
mical behaviour, for instance biennial cycles.

To gain as much understanding of model behaviour as
is possible, we focus on the qualitative behaviour of the
system (asking, for instance, what types of periodic orbits
are seen for a given set of parameters) and use bifurcation
analysis to partition parameter space into regions within
which the model behaves in a qualitatively similar
fashion. Such a study can be performed using analytical
(Grossman 1980; Schwartz & Smith 1983; Smith 1983a,b)
or simulation-based (Bolker & Grenfell 1993; Engbert &
Drepper 1994) techniques, but both of these methods
have their drawbacks. We employ another approach,
involving the numerical implementation of the analytical
techniques used to study bifurcations, which more readily
gives a global picture of the bifurcation structure in para-
meter space (see, for example, Kuznetsov 1995). Such
techniques have been implemented in available software
packages, such as CONTENT (Kuznetsov & Levitin
1995^1997), which we used to perform bifurcation
analyses, following closely the methodology of Kuznetsov
& Piccardi (1994). We emphasize that, whilst bifurcation
analysis provides a detailed study of the dynamics of a
model, these details are of less interest to us than the
overall picture of what types of behaviour (e.g. biennial
cycles, or more complex behaviours) are possible.

The simplest way of summarizing the changing
dynamical patterns which result from altering a single
parameter, in our case the strength of seasonality, is the
parametric portrait (Kuznetsov & Piccardi 1994).
Because the dynamics which result from annual forcing
are of a multi-annual nature, in ¢gure 2 we plot the
numbers of infectives seen at times t ˆ 0, 1, 2, 3, : : : (the
iterates of the so-called time-one map) for each di¡erent
value of  1. An annual cycle corresponds to the appear-
ance of a single point for a given value of  1, a biennial
cycle to the appearance of two points, and so on. Bifurca-
tions can be seen to occur when the number of points, or
their corresponding stability properties, change at some
value of  1.

Figure 2a illustrates the well-known period doubling
scenario (Schwartz & Smith 1983; Aron & Schwartz
1984), in which the annual cycle loses stability as a stable
biennial cycle appears (at the point labelled A). Further
period doublings then occur (the ¢rst two at points B and
C), eventually leading to the appearance of deterministic
chaotic behaviour. Figure 2b shows that period doubling
is not the only method by which biennial cycles can
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appear: a pair of biennial cycles, one stable and one
unstable, appear at point A in a tangent (or saddle-node)
bifurcation (Schwartz & Smith 1983; Smith 1983b). Such
solutions often have quite large amplitudes, with very low
infective levels in the inter-epidemic troughs. Further
changes occur with strengthening seasonality, most
notably at point B where the unstable biennial cycle
collides with the stable annual cycle, resulting in the loss
of the biennial cycle and the destabilization of the annual
cycle. Notice that this scenario exhibits multiple attractor
behaviour, with both stable annual and stable biennial
cycles coexisting for a range of  1-values.

Figure 2 demonstrates that the observed dynamical
changes depend not only on the strength of seasonality,
but also on the baseline rate of transmission (see also
Earn et al. 2000). A bifurcation diagram (Kuznetsov &
Piccardi 1994), which traces out bifurcation points as two
or more parameters are changed, is a convenient way of
summarizing the changing dynamical behaviours exhib-

ited by the model. Figure 3 shows the dependence of
bifurcations a¡ecting annual and biennial cycles on  0

and  1. For instance, the solid black curve illustrates how
the  1-value at which the annual cycle undergoes the
period doubling bifurcation depends on  0 (and hence on
R0). The tangent bifurcation which gave rise to the
biennial cycle in ¢gure 2b can be seen as the dark blue
dashed curve. Because the parametric portraits shown
earlier illustrate the bifurcations seen for a particular
value of  0 as  1 is varied, they can be viewed as vertical
slices through this bifurcation diagram. For further
details on the bifurcations seen here, such as the tangent
bifurcation which gives rise to a pair of high-amplitude
annual cycles (cyan dashed curve), see Kuznetsov &
Piccardi (1994).

So far, all of these analyses have been carried out on the
basic SIR model (with exponential infectious period), and
as such is entirely familiar from the work of Kuznetsov &
Piccardi (1994). This analysis can be repeated for an n-
stage model, and comparison of the bifurcation diagrams
illustrates the dynamical changes which arise as a conse-
quence of non-exponential distributions. Because the
number of equations in the model is equal to n ‡ 1, numer-
ical bifurcation analyses become more time consuming as
n increases, particularly if partial derivatives of the system
are also calculated numerically. For this reason, we
restricted attention to small values of n, and results are
only shown for the n ˆ 5 case.

Changing n, whilst keeping  0 ¢xed, leads to dramatic
changes in the parametric portrait of the model.
Figure 4a shows the parametric portrait for the more
realistic model with the same set of parameters as for the
basic model shown in ¢gure 2a. For this value of  0, bien-
nial cycles ¢rst appear by a tangent bifurcation in the
more realistic (n ˆ 5) model, as opposed to the period
doubling seen in the basic (n ˆ 1) exponential model.
Biennial behaviour appears with a much lower level of
seasonality in the more realistic model. As in the unforced
model, the inclusion of more realistic distributions of
infectious periods leads to destabilization of the model.
Furthermore, the biennial cycle in the more realistic
model has a much larger amplitude than that seen in the
basic model for this value of  0, which has important
consequences for persistence in stochastic formulations of
the model; these will be discussed later (½ 4).

Although the bifurcation sequence di¡ered dramati-
cally between ¢gures 2a and 4a, in which  0 was kept
¢xed, we notice that the behaviour of the more realistic
model in this case is not unfamiliar: the parametric
portrait of the more realistic model closely resembles that
of the basic model, but for a di¡erent baseline rate of
transmission (¢gure 2b). This is borne out upon examina-
tion of the bifurcation diagram of the more realistic
model (¢gure 3b), which shows that the bifurcation
pattern seen for more realistic models is qualitatively very
similar to that seen for the basic model, but that there are
signi¢cant quantitative di¡erences in the parameter
values at which various changes occur. In particular, a
signi¢cant destabilization is seen, with dynamical changes
occuring at much weaker levels of seasonality.

As a particular example of this destabilization, we
focus on the bifurcation that ¢rst leads to the appearance
of biennial cycles. We have seen that this can happen by
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Figure 4. (a) Parametric portrait of the more realistic model,
with n ˆ 5 stages, when  0 ˆ 500/N, corresponding to the
parametric portrait of the basic model shown in ¢gure 2a. All
parameter values and other details are as for ¢gure 2a. Notice
that the appearance of biennial cycles occurs for much weaker
levels of seasonality, and occurs by a tangent bifurcation.
(b) The strength of seasonality required to generate biennial
cycles in the basic (n ˆ 1) and more realistic (n ˆ 5) models,
for a range of values for the baseline rate of transmission (or,
rescaling the axis, R0). We indicate parameter ranges for
which the biennial cycles are ¢rst generated by the period
doubling (solid curve) or tangent (broken curve) bifurcations.



one of two mechanisms: a simple period doubling bifurca-
tion or a tangent bifurcation. Figure 4b compares the
bifurcation curves in the ( 0,  1) plane between the n ˆ 1
and n ˆ 5 models, and shows that the biennial cycle
appears with lower levels of seasonality in the more
realistic model than in the standard model. We remark
that this pattern would not be revealed by simply
comparing the period doubling curves, or the tangent
bifurcation curves, separately.

This analysis can be extended to study the further
bifurcations that occur, such as those which ultimately
lead to chaos. The bifurcation diagrams produced for
behaviours with higher period are more complex yet, and
so are not shown here. But the important observation is
that more complex dynamics arise with much lower levels
of seasonality in the more realistic model.

4. DISCUSSION

The inclusion of more realistic distributions of infec-
tious periods within SIR-type models leads to a destabili-
zation of the model, with more complex dynamics
occuring for weaker levels of seasonality in the more
realistic model. An epidemiologically important extension
of these models allows for a latent period between the
acquisition of infection and the start of infectiousness. The
standard SEIR model (see, for instance, Anderson &
May (1991) or Bolker & Grenfell (1993)) allows for such
an exposed class of individuals, modelling their latent
period by an exponential distribution, with average dura-
tion 1/¼. Because the SIR model is a limiting case of the
SEIR model as the latent period tends to zero, the desta-
bilization phenomena described above also occur in
SEIR models with short latent periods. More generally,
the inclusion of an exposed class complicates the question
of the stability of the endemic equilibrium: for instance,
the damping time need no longer be an increasing func-
tion of the number of infective stages. However, when
general distributions of both infectious and exposed
periods are considered, it still appears that the inclusion
of epidemiologically realistic distributions leads to desta-
bilization compared to the basic SEIR model. (Details of
the inclusion of the exposed class within the modelling
framework, together with an analysis of the endemic
equilibrium and its stability properties can be found in
electronic Appendix B) Furthermore, bifurcation studies
of seasonally forced SEIR models suggest that the desta-
bilization phenomena described above also occur in SEIR
models, even when the latent period is relatively long (see
electronic Appendix B).

The destabilization of the dynamics of the seasonally
forced model answers one of the central criticisms
directed towards those who advocate deterministic chaos
as an explanation for the complex dynamical patterns
seen in the incidence records of childhood viral diseases.
Based on studies which reconstruct the seasonal variations
in transmission from the historical incidence records
(London & Yorke 1973; Fine & Clarkson 1982), it has
been argued that the observed levels of seasonality are far
lower than those required to generate complex dynamics
in the basic seasonally forced SEIR model (Pool 1989).
However, these levels may be strong enough to generate
complex behaviour in models which include more realistic

descriptions of the infectious period. This does not,
however, address the di¤culty that such models have in
reproducing the observed patterns of disease persistence.
Chaotic dynamics often (but not always) involve large
swings in disease incidence, often with the numbers of
infectives falling to well below a single individual. In such
situations, the disease will go extinct (a so-called
èndemic fade-out’). We have seen that the dynamical
destabilization is often accompanied by an increase in the
amplitude of oscillations, which will tend to increase the
chance of fade-out as the number of infective individuals
falls to lower levels between epidemics.

Building on an earlier study (May 1986), Earn et al.
(2000) demonstrated that the e¡ects of vaccination or a
change in the birth rate of the population can be studied
by simply altering the baseline transmission parameter.
The bifurcation diagrams presented here, therefore, can
be employed to assess the impact of vaccination
programmes, or changes in demographic parameters. For
instance, ¢gures 3 and 4b show that there is a window of
baseline transmission rates for which biennial behaviour
will be seen; increasing  0 above or below this window
(the former corresponds to an increase in the birth rate,
and the latter to a decrease the birth rate, or vaccination
of the population) leads to the loss of biennial dynamics,
with annual behaviour instead being observed. (It should
be borne in mind that this study has only examined
annual and biennial behaviour, other multi-annual oscil-
lations also being possible; see Earn et al. 2000.)

The similarity between the bifurcation diagrams of
models with di¡erent distributions of infectious periods
(¢gure 3a,b) opens up the possibility that the behaviour
of the more realistic model, at least from the point of
view of the qualitative dynamics of the deterministic
system, could be captured by the simpler model, provided
that an appropriate transformation of the parameters  0

and  1 is made. This observation echoes one made by
Earn et al. (2000), who noted that the sequence of dyna-
mical changes seen in an SEIR model with a realistic
term-based forcing function was the same as that seen in
an SEIR model with sinusoidal forcing, albeit one which
employed a much lower amplitude of forcing. We remark
that the converse implication of these results is important
for the estimation of transmission parameters by ¢tting
mathematical models to epidemiological data. As an
example, because biennial patterns are obtained more
easily in the more realistic SIR model discussed above,
much lower levels of seasonality would be predicted if the
more realistic model was ¢tted to a given epidemic time-
series than if the basic model was used.

The appearance of multiple attractors and of higher
amplitude oscillations in the deterministic model, both of
which occur more easily in the more realistic model, have
important consequences for the dynamics of stochastic
formulations of the model. As has been frequently
pointed out (Schwartz 1985; Engbert & Drepper 1994;
Lloyd & May 1996; Earn et al. 2000), the coexistence of
di¡erent attractors leads to the possibility of random
e¡ects playing an important dynamical role, as they can
perturb the state of the system between di¡erent basins of
attraction. In the deterministic system, many of these
attractors exhibit large amplitude oscillations. They
cannot correspond to attractors of the stochastic model,
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because their minima fall well below a single infective
individual. They can, however, be important for transient
behaviour of the stochastic model, with realizations of the
stochastic model shadowing trajectories of the determi-
nistic system before undergoing fade-out.

Assumptions concerning the distribution of infectious
periods a¡ect not only endemic behaviour, but also the
initial epidemic behaviour. Elsewhere (Lloyd 2001b), we
show that for a disease with a given basic reproductive
number, the rate of increase of the number of infectives
during the epidemic phase depends heavily on the detailed
properties of the disease process. Less dispersed distri-
butions of infectious periods lead to more rapid growth of
epidemics (Anderson & Watson 1980; Lloyd 1996), but more
importantly, the inclusion of a latent period slows the
epidemic, with less dispersed latent periods leading to
greater reductions (Anderson & Watson 1980; Nowak et al.
1997). These observations have important implications for
the estimation of the basic reproductive number from initial
epidemic data, most importantly that neglecting latent
periods can lead to severe underestimates of R0. Because the
critical vaccination fraction (Anderson & May 1991) is
determined by R0, such underestimates are a severe problem
as they lead to over-optimistic estimates for the vaccination
coverage required to achieve disease eradication.

The unforced SIR model is an instance of the
predator^prey type models widely used in population
biology, and as a consequence the results presented here
may be important in other areas. As an example, the
simplest models used to describe the interactions of
viruses and the immune system in diseases such as HIV
are of an almost identical form (see, for example, Nowak
et al. 1997). Dynamical properties of such models will also
be a¡ected by assumptions of the type discussed here,
and so the results concerning destabilization of the
endemic equilibrium are of clear importance to studies
which attempt to estimate population parameters by
¢tting mathematical models to virus load data obtained
during the approach to the viral quasi-equilibrium which
is established following initial infection (see, for instance,
Sta¡ord et al. 2000).

Because detailed studies of dynamical properties form a
large part of many mathematical explorations of bio-
logical systems, the results of studies such as this have
important wider implications. An important issue when-
ever a mathematical model is used to address a biological
question is of model robustness: if we are to have con¢-
dence in our predictions, we need to be sure that the
observed behaviour is not dependent on the detailed
assumptions which underlie the model. This study has
highlighted the point that model robustness depends on
the question being asked of the model. Whilst the equili-
brium levels of susceptibles and infectives were relatively
insensitive to the assumed infectious period distribution,
the dynamical properties of the model were quite sensitive
to the assumed distribution. Detailed dynamical proper-
ties can be quite dependent on assumptions which are
routinely made in the formulation of mathematical
models for biological systems.
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