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Infection dynamics on scale-free networks
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We discuss properties of infection processes on scale-free networks, relating them to the node-connectivity
distribution that characterizes the network. Considering the epidemiologically important case of a disease that
confers permanent immunity upon recovery, we derive analytic expressions for the final size of an epidemic in
an infinite closed population and for the dependence of infection probability on an individual’s degree of
connectivity within the population. As in an earlier study@R. Pastor-Satorras and A. Vesipignani, Phys. Rev.
Lett. 86, 3200 ~2001!; Phys. Rev. E.63, 006117~2001!# for an infection that did not confer immunity upon
recovery, the epidemic process—in contrast with many traditional epidemiological models—does not exhibit
threshold behavior, and we demonstrate that this is a consequence of the extreme heterogeneity in the connec-
tivity distribution of a scale-free network. Finally, we discuss effects that arise from finite population sizes,
showing that networks of finite size do exhibit threshold effects: infections cannot spread for arbitrarily low
transmission probabilities.
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A wide class of infection processes can be modeled us
a network-based approach, in which individuals are mode
as nodes and possible contacts between individuals by e
between the nodes@1,2#. An immediate question that the
arises is how the properties of the disease and network
pology combine to determine the dynamics of the infecti
Recent work@1#, inspired by the study of large real-worl
social and communication networks@3–6#, has examined the
spread of computer viruses@7,8# on the scale-free network
@9,10# that provide a good description of the connectiv
structure seen in the Internet and the World Wide Web@4,5#.
Using a susceptible-infected-susceptible~SIS! model ~in
which infected nodes recover to a susceptible state!, it was
shown that epidemic processes on scale-free networks
hibit several unexpected behaviors. In particular, they do
exhibit the threshold phenomenon typically seen in epide
ology: computer viruses can spread and persist even w
the probability of transmission is vanishingly small@1#.

Mathematical epidemiologists have long appreciated
important role played by heterogeneity in population str
ture in determining properties of disease invasion, spread
persistence, and consequently have developed many
niques to facilitate the study of disease spread in hetero
neous populations and derived many general results@11,12#.
Here, we employ these techniques and results to study
infection dynamics of epidemics on scale-free networ
whose node-connectivity distribution~i.e., the distribution of
probabilities that nodes have exactlyk neighbors! follows a
power law of the formP(k);k2n, where 2,n<3, and for
which the least-connected nodes have connectivitym. We
first focus on then53 case, which corresponds to the sca
free network generated by the simplest algorithm of Barab´si
and Albert@9#, and then generalize to 2,n<3 @10#.

We consider a description of the infection process th
compared with the SIS model, is more appropriate both
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many epidemiological situations and also, we argue,
computer viruses. We assume that nodes do not recover
susceptible state, but rather are permanently immune to
ther infection~either by the development of an appropria
immune response, or by the installation of antiviral so
ware!. The resulting model is known as a susceptib
infected-recovered~SIR! model. The long-term maintenanc
of the infection is now impossible in a closed population d
to the depletion of susceptible nodes as the epidemic spr
through the population. In general, if there were a su
ciently rapid input of new susceptibles~either by births, or
with the addition of new, unprotected computers to the n
work!, an endemic level of infection could be reached, but
this study we restrict our attention to the case of a clo
population.

We assume that the probability of a susceptible node
quiring infection from a given neighboring infected node in
short time intervaldt is bdt, and the the rate at which in
fected nodes recover isg, i.e., the average duration of infec
tion is D51/g. Furthermore, we assume that the mixing p
tern of the population is random, by which we mean that
probability that a given neighbor of a node of typei is of
type j depends only on the node-connectivity distribution
the population, which means that the probability is given
jP( j )/(kP(k) ~see, for instance, Refs.@11,12#!.

Assuming an infinite population, we can formulate t
network model in way directly equivalent to that used
epidemiologists to study the transmission dynamics of se
ally transmitted diseases, such as gonorrhoea and HIV@11–
13#. We denote the fraction of nodes that are both of typi
~i.e., havei neighbors! and which are susceptible to infectio
by xi , and the corresponding fraction of nodes that are b
of type i and are infected byyi . The time evolution of these
quantities is given by

ẋi52xi(
j

b i j y j ~1!

ẏi5xi(
j

b i j y j2gyi , ~2!
©2001 The American Physical Society12-1
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for i>m and whereb i j denotes the per capita infection ra
at which sites of typei acquire infection from sites of typej.
Given the previously discussed assumption of random m
ing, b i j 5 i j b/^k&. Here^k& denotes the average connectivi
of the nodes.~Throughout this paper, we denote the averag
value of a functionf (k) taken over the networks bŷf (k)&.
For the analysis of the infinite system, we approximate
infinite sums involved in such averages by the correspond
integrals.! In the initial disease-free state, before the intr
duction of infection, all individuals are susceptible, soyj
50 for all j, andxj5P( j ).

We definer05b D^k&. The quantityr0 would be the av-
erage number of secondary infections caused by the in
duction of a single infected individual into an entirely su
ceptible population, if the population were homogeneo
~i.e., if every individual had exactlŷk& neighbors!. This
average number of secondary infections is a central qua
in epidemiological theory, and is known as the basic rep
ductive number@12#.

The standard epidemiological theory@11,12# shows that
this model exhibits threshold behavior, with the introducti
of infection leading to an epidemic outbreak ifR0.1,
where, for the heterogeneous network defined above, the
sic reproductive numberR0 equals@12,14#

R05r0~11CV
2 !. ~3!

Here CV denotes the coefficient of variation of the conne
tivity distribution, i.e.,CV

25^k2&/^k&221. For the scale-free
distributions considered here,CV is infinite because the vari
ance of the connectivity distribution is infinite. In contra
with the case of a homogeneous network, which exhib
threshold behavior atr051, R0 for the scale-free network
~at least for the infinite population case! is infinite for any
nonzero transmission probability and so an outbreak can
ways occur@1#.

Furthermore, the epidemic theory@11,12# shows@by di-
rect integration of Eqs.~1! and~2!# that the fraction of nodes
ever infected~the so-called final epidemic size! I equals

I 5^12e2ka&, ~4!

wherea is determined by the equation

a5r0

^k~12e2ka!&

^k&2
. ~5!

In order to calculate these averages, as discussed ab
we approximatek by a continuous quantity, takingP(k)
52m2/k3. Herem denotes the connectivity of the least co
nected nodes and the constant of proportionality is de
mined by requiring*m

` P(k)dk51. The average connectivit
of the nodes iŝk&52m and the second moment,^k2&, is the
limiting value of 2m2 ln(kmax/m) askmax→`, which is infi-
nite.

Substituting this form ofP(k) into expresion~5! gives

a5r0

2m2

4m2E
m

`dk

k2~12e2ka!, ~6!
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and definingf5ma andk5mx, we get

f5
r0

2 E
1

`dx

x2~12e2fx!5
r0

2
@12E2~f!#, ~7!

whereE2(f) denotes the exponential integral of the seco
kind of f. Use of a standard formula@15# @Eq. ~5.1.14!#
allows Eq.~7! to be rewritten in terms of exponential inte
grals of the first kind,

2

r0
5S 12e2f

f D1E1~f!. ~8!

This equation can be solved~at least numerically! to obtain
f(r0) and henceI (r0) can be obtained by substituting int
Eq. ~4!,

I 52m2E
m

`dk

k3 ~12e2ka!5122E3~f!. ~9!

When r0!1, we can find an approximate analytic sol
tion of Eq. ~8! and hence the approximate final epidem
size. It is easy see that ifr0!1, thenf must be small, so we
make use of the small value expansion ofE1(f) @15# @Eq.
~5.1.11!# to give

2/r052 ln f1~12g!1f/21 . . . , ~10!

hereg is the Euler-Mascheroni constant, 0.577 . . . . Hence

f5ke22/r0$11O~e22/r0!%, ~11!

where k5e12g'e0.423 . . .51.527 . . . . Finally, use of a
standard expression forE3(f) @15# @Eq. ~5.1.12!# gives I
52f$11O(f ln f)%, or

I 52ke22/r0H 11OS e22/r0

r0
D J . ~12!

Figure 1 illustrates final epidemic sizes calculated using b
exact~9! and approximate~12! solutions.

FIG. 1. Fraction ever infected in the SIR model on a scale-f
network withn53 andm54. Solid curve gives the exact solutio
obtained from Eq.~9!, and the broken curve the approximation~12!,
which is indeed a good approximation forr0!1.
2-2
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INFECTION DYNAMICS ON SCALE-FREE NETWORKS PHYSICAL REVIEW E64 066112
Oncef is known, expressions for the fraction of nodes
connectivityk, which are ever infected during the course
the epidemic can be obtained. In terms of the scaled vari
i 5k/m, the fraction of nodes of typei that are ever infected
is given by the standard~exact! result @11,12# that I i51
2e2 if. For r0!1, this can be approximated asI i'1
2exp(2i/ic), where i c5e2/r0/k. We notice that, in general
few individuals are infected in the low-connectivity class
~although there are, of course, lots of these! but essentially
all individuals are infected in high-connectivity classes~Fig.
2!.

The above results can be generalized to a more gen
class of scale-free networks for which the exponentn in the
power law lies between 2 and 3@10#. For this general case
we have thatP(k)5(n21)mn21/kn, ^k&5(n21)/(n22),
and ^k2& is the limiting value of (n21)m2$(kmax/m)2

21%/(32n) askmax→`, which is again infinite.
As before, substitutingP(k) into Eq.~5! gives an implicit

equation that determinesa. In terms of the scaled variabl
f5ma, we then have

f5r0

~n22!2

~n21!
fn22E

f

` ds

sn21
~12e2s!. ~13!

Oncea ~or f) has been found, an expression forI follows
upon substitution into Eq.~4!

I 5~n21!E
1

`dx

xn ~12e2xf!. ~14!

As before, ifr0!1 thenf must be small, and performin
an integration by parts, one can show that the integra
expression~13! is given by

E
f

` ds

sn21
~12e2s!5

G~32n!

n22
$11O~f32n!%, ~15!

FIG. 2. Fraction of nodes of each connectivity type that are e
infected in the SIR epidemic of Fig. 1. The broken curves sh
results for four different values ofr0 ~from left to right: 1.0, 0.4,
0.25, and 0.2!, and the solid curve illustrates, forr051, the ap-
proximation discussed in the text.~For the smaller values ofr0, the
approximate curves are indistinguishable from the correspon
exact curves.!
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and hence thatf is given by

f5F S n22

n21DG~32n!r0G1/(32n)

$11O~r0!%. ~16!

Performing a similar manipulation on the integral in expre
sion ~14! and substituting the now known value off gives

I 5S n21

n22D F S n22

n21DG~32n!r0G1/(32n)

3$11O~r0 ,r0
(n22)/(32n)!%. ~17!

Clearly, one could obtain results for the fraction of nod
of type i ever infected, as in then53 special case discusse
above. But the interesting point here is that the essen
singularity, I;e22/r0, of the n53 case is now replaced b
milder power laws (I;r0

1/(32n)). As an example, forn
52.5, f'(p1/2r0 /3)2$11O(r0)% and I'(p/3)r0

2$1
1O(r0)%.

We finish this study with a brief discussion of finite-siz
effects. The deterministic model, as described by Eqs.~1!
and~2!, consists of an infinite set of equations. This set m
be truncated~e.g., for simulation purposes! at connectivity
k5kmax. We takeP(k)5C/kn, but note thatC is dependent
on kmax.

The variance of the node-connectivity distribution is s
large, but not infinite; henceR0 @Eq. ~3!# is no longer infinite.
The finite model does exhibit threshold effects, albeit
much lower transmission probabilities than for the cor
sponding homogeneous situations. Using the continuous
proximation discussed above, it is easy to see that, fon
53, R0' 1

2 r0 ln(kmax/m). Whilst it is straightforward to in-
terpret finite-size effects in terms ofkmax, it is a little more
tricky to interpretkmax in terms of the number of nodesN in
the finite network. A rough argument, using the continuo
approximation forP(k) shows thatkmax/m'N1/3 and that
R0' 1

6 r0 ln N. As an example, this means that for a netwo
of sizeN5105, with m54, kmax'190; for comparison, such
networks generated using the Baraba´si and Albert algorithm
@9# have, on average,kmax'700.

Figure 3 illustrates this finite-size effect: disease invas
does indeed require higher transmission probabilities w
kmax is smaller, as the vertical asymptotes ofI for the finite
models clearly demonstrate the existence of threshold be
ior. This result contradicts the claim@1# that threshold behav
ior is absent in networks of finite size. We remark that, for
but the smallest-sized networks, the curves in Fig. 3 clos
follow the analytic solution of the infinite model whe
viewed over a restricted range of values of 1/r0, and that the
figures used to support the claim@1# employ somewhat re-
stricted ranges of transmission probabilities, with relative
large transmission probabilities used for the smaller n
works.

A second finite size effect arises from demograp
stochasticity—the random effects that arise from the popu
tion consisting of a discrete set of individuals. For instan
in stochastic simulations of an epidemic on a given netwo
there will always be some chance that an initial infecti
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ROBERT M. MAY AND ALUN L. LLOYD PHYSICAL REVIEW E 64 066112
individual will recover before transmission of infection o
curs, particularly if that initial infective has a low number
neighbors@14#. Further discussion of finite-size effects w
appear elsewhere@16#.

Our analysis assumes random mixing and ignores lo
network structure: both assumptions have received cons
able attention in the epidemiological literature@17–19#. One

FIG. 3. Fraction ever infected in the SIR model, as in Fig.
with the heavy solid curve denoting the analytic solution for t
infinite model, and broken curves denoting quantities calculated
the finite model withkmax5m ~i.e., a homogeneous network!, 100,
1000, and 10 000~from left to right!. Notice the threshold phenom
enon seen as the epidemic-size curves in finite models appr
vertical asymptotes.
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alternative to random mixing is assortative mixing, in whi
individuals preferentially interact with similarly connecte
individuals. This increases the initial rate of increase of
epidemic, but reduces the final epidemic size@17,18#. Local
structure slows disease spread, as the shortest path jo
two individuals often involves many intermediates and a
as such networks exhibit clique behavior, with pairs of co
nected individuals sharing many common neighbors@19#.
Long-range transmission events, however, even if relativ
infrequent, can substantially enhance disease spread@3#.

An important finding that emerges from our analysis is t
crucial role played by the most highly connected nodes
spreading infection and, in the SIS model, in maintaini
infection. This has clear implications for control strategi
for diseases that spread over heterogeneous netwo
Clearly, control programs should be targetted towards
most highly connected nodes, and such programs will
much more effective than those that target nodes at rand
We remark that this result is clearly analogous to recent
servations made regarding the attack tolerance of scale
networks@20#. Furthermore, this result is well known to ep
demiologists@11–13#; its use in public health policy~for
instance, programs to prevent the spread of sexually tra
mitted diseases often target high-risk groups, such as pr
tutes! testifies that this is no mere academic curiosity.

A.L.L. thanks the Leon Levy and Shelby White Initiative
Fund for financial support.
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