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Infection dynamics on scale-free networks
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We discuss properties of infection processes on scale-free networks, relating them to the node-connectivity
distribution that characterizes the network. Considering the epidemiologically important case of a disease that
confers permanent immunity upon recovery, we derive analytic expressions for the final size of an epidemic in
an infinite closed population and for the dependence of infection probability on an individual’s degree of
connectivity within the population. As in an earlier study. Pastor-Satorras and A. Vesipignani, Phys. Rev.
Lett. 86, 3200(2001); Phys. Rev. E63, 006117(2001)] for an infection that did not confer immunity upon
recovery, the epidemic process—in contrast with many traditional epidemiological models—does not exhibit
threshold behavior, and we demonstrate that this is a consequence of the extreme heterogeneity in the connec-
tivity distribution of a scale-free network. Finally, we discuss effects that arise from finite population sizes,
showing that networks of finite size do exhibit threshold effects: infections cannot spread for arbitrarily low
transmission probabilities.
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A wide class of infection processes can be modeled usingnany epidemiological situations and also, we argue, for
a network-based approach, in which individuals are modelegomputer viruses. We assume that nodes do not recover to a
as nodes and possible contacts between individuals by edgg¢sceptible state, but rather are permanently immune to fur-
between the nodefl,2]. An immediate question that then j[her infection(either by the dev_elopme_nt of an appropriate
arises is how the properties of the disease and network tgMmune response, or by the installation of antiviral soft-

pology combine to determine the dynamics of the infectionV&®. The resuling model is known as a susceptible-

Recent work|1], inspired by the study of large real-world infected-recoveredSIR) model. The long-term maintenance

Socil and communicaton networkd-, has examined he [0 PIecton = now mposeile 2 closed populaton due,
spread of computer virus¢g,8] on the scale-free networks . ; -
[9.10] that provide a good description of the connectivity through the population. In general, if there were a suffi

; . ciently rapid input of new susceptiblésither by births, or
structure seen in t.he Internet and the World Wide “E‘EB_]' with the addition of new, unprotected computers to the net-
Using a susceptible-infected-susceptikl®lS) model (in

L9 g . work), an endemic level of infection could be reached, but in
which infected nodes recover to a susceptible staltevas s study we restrict our attention to the case of a closed
shown that epidemic processes on scale-free networks exnpylation.
hibit several unexpected behaviors. In particular, they do not \we assume that the probability of a susceptible node ac-
exhibit the threshold phenomenon typically seen in epidemiguiring infection from a given neighboring infected node in a
ology: computer viruses can spread and persist even wheghort time intervaldt is 8dt, and the the rate at which in-
the probability of transmission is vanishingly smll. fected nodes recover ig, i.e., the average duration of infec-
Mathematical epidemiologists have long appreciated the&ion is D= 1/y. Furthermore, we assume that the mixing pat-
important role played by heterogeneity in population structern of the population is random, by which we mean that the
ture in determining properties of disease invasion, spread artrobability that a given neighbor of a node of typés of
persistence, and consequently have developed many tectypej depends only on the node-connectivity distribution of
niques to facilitate the study of disease spread in heterogdéhe population, which means that the probability is given by
neous populations and derived many general regidtg2.  jP(j)/=kP(k) (see, for instance, Reffl1,12).
Here, we employ these techniques and results to study the Assuming an infinite population, we can formulate the
infection dynamics of epidemics on scale-free networksnetwork model in way directly equivalent to that used by
whose node-connectivity distributidie., the distribution of ~ €Pidemiologists to study the transmission dynamics of sexu-

probabilities that nodes have exackyneighbors follows a  ally transmitted diseases, such as gonorrhoea and[H1V
power law of the formP (k) ~k~*, where 2<»<3, and for 13]. We denote the fraction of nodes that are both of tiype

which the least-connected nodes have connectivityWe (i.e., have neighbor$ and which are susceptible to infection
first focus on thev=3 case, which corresponds to the scale-by x;, and the corresponding fraction of nodes that are both

free network generated by the simplest algorithm of Basaba Of YPe! and are mfscted by; . The time evolution of these
and Albert[9], and then generalize to2r<3 [10]. quantities Is given by

We consider a description of the infection process that, .
compared with the SIS model, is more appropriate both for Xi= _Xi; BijYij @

* Corresponding author. Email address: alun@alunlloyd.com Yi =xi; BiiYi— i, (2
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for i=m and whereg;; denotes the per capita infection rate
at which sites of typé acquire infection from sites of tyge
Given the previously discussed assumption of random mix-
ing, Bij=ij B/(k). Here(k) denotes the average connectivity
of the nodes(Throughout this paper, we denote the averaged
value of a functionf (k) taken over the networks bif (k)).
For the analysis of the infinite system, we approximate the
infinite sums involved in such averages by the corresponding
integrals) In the initial disease-free state, before the intro-
duction of infection, all individuals are susceptible, Bp
=0 for all j, andx;=P(j).

We definepy= B D(k). The quantityp, would be the av-

In 7

5 . I . 1

erage number of secondary infections caused by the intro- 0 0.5 T 1|.5 T2 25 3
duction of a single infected individual into an entirely sus- 1/p,

ceptible population, if the population were homogeneous

(i.e., if every individual had exactlyk) neighbors. This FIG. 1. Fraction ever infected in the SIR model on a scale-free

average number of secondary infections is a central quantitjétwork withv=3 andm=4. Solid curve gives the exact solution
in epidemiological theory, and is known as the basic repro®Ptained from Eq(9), and the broken curve the approximatida),
ductive numbef12]. which is indeed a good approximation fog<1.

The standard epidemiological theof¥1,12 shows that
this model exhibits threshold behavior, with the introduction
of infection leading to an epidemic outbreak Ry>1, po [=dx 00
where, for the heterogeneous network defined above, the ba- d=—=| —=(1—-e )=[1-Ex¢)], (7)
sic reproductive numbeR, equals[12,14] 2J1X 2

and definingg=ma andk=mx, we get

Ro— p(14C2). 3 whereE,($) denotes the exponential integral of the second

0=Pol v) @ kind of ¢. Use of a standard formulpl5] [Eq. (5.1.14]
Here Cy denotes the coefficient of variation of the connec-allows Eq.(7) to be rewritten in terms of exponential inte-
tivity distribution, i.e.,C2=(k2)/(k)>—1. For the scale-free 9rals of the first kind,

distributions considered her€,, is infinite because the vari- 2 ¢
ance of the connectivity distribution is infinite. In contrast —=( +Eq(¢). (8
with the case of a homogeneous network, which exhibits Po ¢

threshold behavior apo=1, R, for the scale-free network ;g equation can be solvddt least numericallyto obtain

(at least for the infinite population cgsis infinite for any - N
nonzero transmission probability and so an outbreak can a_ép&)‘r)and hencd (po) can be obtained by substituting into

ways occui{1].

Furthermore, the epidemic theof$1,12 shows[by di- wdk
rect integration of Eqq.1) and(2)] that the fraction of nodes I = 2m2f F(l_ e ) =1-2E;(¢). 9
ever infectedthe so-called final epidemic sigé equals m

|=(1—e k) 4) When py<1, we can find an approximate analytic solu-
' tion of Eq. (8) and hence the approximate final epidemic
size. It is easy see thatgf<1, then¢ must be small, so we
make use of the small value expansionEf(¢) [15] [Eq.
<k(1_e*ka)> © (5.1.11] to give
a—= — .
Po (k)? 2lpo=—INp+(1—y)+ P2+ ..., (10)

where« is determined by the equation

In order to calculate these averages, as discussed abovesre y is the Euler-Mascheroni constant, 0757.. . Hence
we approximatek by a continuous quantity, takin@(k)
=2m?/k3. Herem denotes the connectivity of the least con- ¢=re ?Po{1+0(e" o)}, (11)
ngcted nodes.e.md ihe cons_tant of proportionality 'S.d.eter\hhere k—el-7~e%2B..—15%7 . _ Finally, use of a
mined by requiringf ,P(K)dk=1. The average connectivity standard expression fdEs() [15] [Eq. (5.1.12] gives |
of the nodes igk)=2m and the second momenrk?), is the b 3 q-t-2.2a91'9

limiting value of 2m?2 In(Kyay/M) as Kpyaeoe, which is infi- =2¢{1+0(sIn )}, or

nite. e 2/po
Substituting this form o (k) into expresion5) gives |=2ke 2P0 14+ 0 ; )] (12
0
2m? (=dk ’ Figure 1 illustrates final epidemic si lculated using both
a:po_zf —(1—e k@), 6) igure 1 illustrates final epidemic sizes calculated using bo
4m® J i K exact(9) and approximatél2) solutions.
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- g and hence tha# is given by

0.8 — ,’/ , v—2 UE=v)
Y, ; =1,/ B=v)ro {1+0(po)}. (16
0'6_ I, ‘,I' . . . . . . .
=~ / Performing a similar manipulation on the integral in expres-
04l ,"I sion (14) and substituting the now known value @fgives
/ v—1\|[v—2 (E=v)
021 S I= E) (V_l)r(3—V)Po
. ) e X{1+0O(pg,ply=2C=), 1
o1 10 100 1000 10000 100000 { (P01 ) (7

k Clearly, one could obtain results for the fraction of nodes

FIG. 2. Fraction of nodes of each connectivity type that are eve®f typei ever infected, as in the=3 special case discussed
infected in the SIR epidemic of Fig. 1. The broken curves showabove. But the interesting point here is that the essential
results for four different values gf, (from left to right: 1.0, 0.4,  singularity, | ~e~ 2o, of the v=3 case is now replaced by
0.25, and 0.2 and the solid curve illustrates, for,=1, the ap-  milder power laws (“P(l)/(3_ V))- As an example, forv

proximation discussed in the texEor the smaller values gfy, the =2 5 ¢%(W1/2p0/3)2{1+ O(pg)} and Im(/n-/?,)pé{l
approximate curves are indistinguishable from the corresponding. O(pg)}

exact curves. We finish this study with a brief discussion of finite-size
. . . effects. The deterministic model, as described by Efs.
Once¢ is known, expressions for the fraction of nodes of o (2) consists of an infinite set of equations. This set may

connectivityk, which are ever infected during the course of truncatede.g., for simulation purposest connectivity
the epidemic can be obtained. In terms of the scaled variablg_ We takeP (k) = C/k”, but note thaC is dependent
max-* l

i =k/m, the fraction of nodes of typiethat are ever infected
is given by the standardexac) result[11,17 that |;=1

—e '’ For po<1, thiszlpcan be approximated d@$~1  |3rge but not infinite; henc, [Eq. (3)] is no longer infinite.
—exp(-ilig), wherei.=e“"o/«x. We notice that, in general, The finite model does exhibit threshold effects, albeit for
few individuals are infected in the low-connectivity classesy,,ch lower transmission probabilities than for the corre-

(although there are, of course, lots of thebet essentially  gponding homogeneous situations. Using the continuous ap-
all individuals are infected in high-connectivity clas$€gg. proximation discussed above, it is easy to see that,sfor
2). i =3, Ry~3po IN(kmax/M). Whilst it is straightforward to in-

The above results can be generalized to a more generglyy et finite-size effects in terms &f.,, it is a little more
class of sca_le-free networks for which thel exponeit the tricky to interpretk, o, in terms of the number of nodegin
power law lies between 2 a?fjg?‘o} For this general case, o finite network. A rough argument, using the continuous
we havze that (k) =(v—1)m" /K, <k>:(”_21)/(”_2)2' approximation forP(k) shows thatk,,/m~N"? and that
and (k%) is the limiting value of ¢—1)mY{(kna/M” R 1, |nN.As an example, this means that for a network
~1/(3=) askyg—o, whichis again infinite. £ gj;eN=10F, with m=4, k,,,~190; for comparison, such

As before, substituting (k) into Eq. (5) gives an implicit  eyorks generated using the Barsiband Albert algorithm
equation that determines. In terms of the scaled variable [9] have, on averagd,.,~700.
¢=ma, we then have Figure 3 illustrates this finite-size effect: disease invasion

) does indeed require higher transmission probabilities when
b= (r—2) V—zfm ds (1-e9) (13) Kmax is smaller, as the vertical asymptoteslidbr the finite
Po (v—1) 65”1 ' models clearly demonstrate the existence of threshold behav-
ior. This result contradicts the claifi] that threshold behav-
Oncea (or ¢) has been found, an expression fdollows  ior is absent in networks of finite size. We remark that, for all
upon substitution into Eq4) but the smallest-sized networks, the curves in Fig. 3 closely
follow the analytic solution of the infinite model when
dx viewed over a restricted range of values gigl/and that the
II(V_l)L 7(1—67“’5)- (149 figures used to support the claifi] employ somewhat re-
stricted ranges of transmission probabilities, with relatively
large transmission probabilities used for the smaller net-
orks.

A second finite size effect arises from demographic
stochasticity—the random effects that arise from the popula-
- ds (3— ) tion consisting of a discrete set of individuals. For instance,
f (1-e %)= ———{1+0(¢* ¥}, (15  Instochastic simulations of an epidemic on a given network,

st v—2 there will always be some chance that an initial infective

on Kia-
The variance of the node-connectivity distribution is still

As before, ifpg<<1 then¢ must be small, and performing
an integration by parts, one can show that the integral i
expression(13) is given by
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0 alternative to random mixing is assortative mixing, in which
individuals preferentially interact with similarly connected
s individuals. This increases the initial rate of increase of the
- - epidemic, but reduces the final epidemic dit&,1§. Local
= structure slows disease spread, as the shortest path joining

two individuals often involves many intermediates and also
as such networks exhibit clique behavior, with pairs of con-
nected individuals sharing many common neighbfd§].
Long-range transmission events, however, even if relatively
infrequent, can substantially enhance disease sgfdad

An important finding that emerges from our analysis is the
1p 3 crucial role played by the most highly connected nodes in

0 spreading infection and, in the SIS model, in maintaining

FIG. 3. Fraction ever infected in the SIR model, as in Fig. 1'|nfect|.on. This has clear implications for control strategies
with the heavy solid curve denoting the analytic solution for thefor diseases that spread over heterogeneous networks.
infinite model, and broken curves denoting quantities calculated foplearly,_ control programs should be targetted toward_s the
the finite model withk,.,=m (i.e., a homogeneous netwoyk.00, most highly conn_ected nodes, and such programs will be
1000, and 10 00from left to righy. Notice the threshold phenom- Much more effective than those that target nodes at random.
enon seen as the epidemic-size curves in finite models approadfye remark that this result is clearly analogous to recent ob-
vertical asymptotes. servations made regarding the attack tolerance of scale-free
networks[20]. Furthermore, this result is well known to epi-
demiologists[11-13; its use in public health policyfor
instance, programs to prevent the spread of sexually trans-
mitted diseases often target high-risk groups, such as prosti-
tutes testifies that this is no mere academic curiosity.

BE

individual will recover before transmission of infection oc-
curs, particularly if that initial infective has a low number of
neighborg[14]. Further discussion of finite-size effects will
appear elsewheifd 6].

Our analysis assumes random mixing and ignores local
network structure: both assumptions have received consider- A.L.L. thanks the Leon Levy and Shelby White Initiatives
able attention in the epidemiological literatyfe/—19. One  Fund for financial support.
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