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Abstract

Multi-patch models – also known as metapopulation models – provide a simple framework within which

the role of spatial processes in disease transmission can be examined. An n-patch model which distinguishes
between k different classes of individuals is considered. The linear stability of spatially homogeneous
solutions of such models is studied using an extension of an analysis technique previously described for a

population setting in which individuals migrate between patches according to a simple linear term. The

technique considerably simplifies the analysis as it decouples the nk dimensional linearized system into n
distinct k-dimensional systems. An important feature of the spatial epidemiological model is that the spatial
coupling may involve non-linear terms. As an example of the use of this technique, the dynamical behavior

in the vicinity of the endemic equilibrium of a symmetric SIR model is decomposed into spatial modes.

For parameter values appropriate for childhood diseases, expressions for the eigenvalues corresponding

to in-phase and out-of-phase modes are obtained, and it is shown that the dominant mode of the system is
an in-phase mode. Furthermore, the out-of-phase modes are shown to decay much more rapidly than

the in-phase mode for a broad range of coupling strengths.
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1. Introduction

Space plays an important role in many infectious disease processes. This is hardly surprising as
populations are not well-mixed: interactions between individuals tend to be mainly local in nature.
Disease incidence records clearly illustrate non-uniformities in the spatial distribution of cases,
and in many instances highlight striking examples of spatial patterns [7,25,28]. As spatial patterns
of disease are dependent on an often complex interplay between several factors (such as the
dynamics intrinsic to a given host/pathogen interaction and the nature of mixing exhibited by a
given population), mathematical models provide an excellent framework within which spatial
processes and the emergence of patterns can be studied.
This study considers metapopulation models, in which the population is subdivided into a

number of discrete patches, each of which is treated as being well-mixed. This formulation is
commonly used as a model for the transmission of disease within and between different popu-
lation centers. As an example, such models have been used to study the spatial dynamics of
childhood diseases, such as measles, on a city-by-city level in an attempt to understand the
mechanisms which give rise to the often high levels of synchronization seen between disease
outbreaks in different cities [7,25].
Just as the analysis of equilibrium states often forms the first step in analyses of non-spatial

models, a natural starting point for the study of a spatially extended model involves an analysis of
spatially homogeneous states (which we term �flat solutions�) of the system. With the increased
dimensionality of spatial models, even linear stability analysis becomes much more involved
compared to non-spatial settings. Transform techniques, in which perturbations about the flat
solution are decomposed into a collection of modes, can often simplify the analysis since the (lin-
earized) equations describing the time-evolution of different modes are decoupled from each other.
In recent work, a transform methodology appropriate for metapopulation models was devel-

oped [15]. Here, this technique will be used to decompose the behavior of the metapopulation
disease model, in the vicinity of its flat endemic equilibrium, into spatial modes. Furthermore,
expressions for the eigenvalues which determine the stability (and characteristic decay times) of
the modes will be obtained. The analysis shows that the dominant (i.e. the least slowly decaying)
mode is always an in-phase mode, in which the densities of individuals in each patch oscillate
together, and that the remaining out-of-phase modes decay much more rapidly provided that the
coupling strength is neither too weak nor too strong. This analysis provides a more intuitive
method for the derivation of the results of Lloyd and May [19], as well as providing a basis for
obtaining generalizations of their results.
This paper is organized as follows. Section 2 briefly recaps and extends the results of Jansen and

Lloyd [15] for an ecologically motivated spatial metapopulation model with a linear migration
term. Section 3 discusses the formulation of metapopulation extensions of standard epidemio-
logical models, including a discussion of the �beta matrix� which describes the non-linear epide-
miological coupling between patches. In Section 4, the analysis technique discussed in Section 2 is
applied to the epidemiological metapopulation model. Section 5 studies the stability of the spa-
tially homogeneous endemic equilibrium using the results of Section 4, and provides improved
approximations for the eigenvalues describing the decay of in- and out-of-phase modes. Section 6
briefly discusses the analysis of an epidemiological metapopulation model in which the between-
patch coupling arises from migration of individuals between patches.
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2. The stability of flat solutions of spatial metapopulation models with linear migration

Jansen and Lloyd [15] considered the following simple, ecologically motivated, n-patch meta-
population model describing an interaction between k different species
dxj

dt
¼ f ðxjÞ þ

Xn

i¼1
cijMxi: ð1Þ
Here, each xj is a k-dimensional vector describing the densities of all species in patch j. The right
hand side of (1) is made up of two terms. The first term, given by the function f , describes the
within-patch interactions between species; this function would describe the single patch dynamics
if there were no spatial coupling. The second term describes the migration of individuals between
patches.
It is assumed that the pattern of migration between patches, as described by the n� n matrix C,

is the same for all species, but that different species may have different migration rates, mk, which
form the entries of the diagonal k � k matrix M . The patches are assumed to be of equal size,
although as noted in [15], this assumption can be relaxed.
The analysis involves the use of a book-keeping system to keep track of all nk state variables in

a simple fashion, achieved by arranging the densities in a matrix, X ¼ ðx1; . . . ; xnÞ. The columns of
X contain the densities of the k species within a patch and the rows contain the densities of a given
species across the n patches. With this notation, the model (1) can be cast into the following form:
dX
dt

¼ F ðX Þ þMXC; ð2Þ
where F ðX Þ ¼ ðf ðx1Þ; . . . ; f ðxnÞÞ, and, as discussed above, the function f describes the within-
patch interactions.
An important property that follows from the definition of X is that post-multiplication of the

matrix of densities (e.g. a term of the form XC) represents interactions of a given species between
different patches (i.e. migration), whereas pre-multiplication of the matrix (e.g. a term of the form
JX ) represents interactions between different species within the same patch.
It is straightforward to show that the linearized equation describing the time evolution of a

small perturbation about a flat solution, Sflat ¼ ðsðtÞ; . . . ; sðtÞÞ, is given by

dY
dt

¼ JðsðtÞÞY þMYC; ð3Þ
where JðsðtÞÞ is the matrix of partial derivatives (also known as the Jacobian matrix) of the
function describing the between-species (i.e. within-patch) interactions, evaluated at sðtÞ. An
important property of (3) is that the only term which involves post-multiplication of Y is the term
YC.
The analysis of [15] shows that the linearized system (3) can be decomposed into n decoupled k-

dimensional systems. The matrix C can be diagonalized by a similarity transformation, A, giving
A�1CA ¼ K. The transformation has a simple construction: the columns of A are the (right)
eigenvectors of C, and the entries of K are the corresponding eigenvalues, written as Ki. We order
the eigenvalues of C such that K1 is the maximal eigenvalue (i.e. the one with largest real part).
Writing WðtÞ ¼ Y ðtÞA, Eq. (3) becomes
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dW
dt

¼ JðsðtÞÞW þMWK: ð4Þ
Since the only term which post-multiplies W is the diagonal matrix K, the equations for the time
evolution of each column of W are decoupled. This reduces the analysis from that of an nk
dimensional system to n decoupled k-dimensional systems, and thus represents a considerable
simplification.
Writing the ith column of W as wi, and noting that the effect of (post)multiplying this column

vector by K is to multiply the vector by Ki, the decoupled equations describing the linearization
can be written as
dwi

dt
¼ fJðsðtÞÞ þ KiMgwi: ð5Þ
We remark that this analysis can be carried out without the use of the matrix notation, but is
considerably more complex, requiring the use of Kronecker product constructs (see [23]).
We see that if the migration rate, m, is the same for all species, the linearization takes a par-

ticularly simple form, with the matrix on the right hand side of (5) given by JðsðtÞÞ þ mKiI ðkÞ,
where I ðkÞ is the k-dimensional identity matrix. In this case, the eigenvalues of the full spatial
system in an equilibrium setting are simply obtained by adding mKi to those of the single patch
system.
Eq. (5) can be used to investigate the linear stability of both equilibrium and non-equilibrium

behaviors of the system. For instance, the Floquet multipliers of a periodic orbit (which describe
the linearization of the Poincar�e map corresponding to the periodic orbit) can be obtained from
the integration of (5) over one orbital period. Similarly, integration over longer timescales can be
used to determine the Lyapunov exponent spectrum of a given attractor of the system. Notice that
even though (5) is a linear system, its integration for non-equilibrium situations is usually difficult
because the Jacobian matrix depends on the trajectory sðtÞ.

2.1. A generalization of the spatial analysis

The linearization (3) is a particular example of the general form
dY
dt

¼ PY þ QYC; ð6Þ
where C is a constant k � k matrix, and P and Q are arbitrary k � k matrices, which need not be
constant.
We remark that in this more general setting, the interpretation of the matrices P , Q and C may

differ from their counterparts in the original ecological setting (3). In the particular case (3), P is
the within-patch Jacobian matrix, which depends on sðtÞ, whilst Q is a constant diagonal matrix.
As another example, the more general model of [12] allows migration rates to be dependent on the
densities of the species. Linearization around a flat solution of this model leads to an equation of
the form (6), with P equal to the appropriate within-patch Jacobian matrix but for which Q is
neither diagonal nor constant, reflecting the dependence of migration rates on the densities of the
other species.
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Since the only term that involves post-multiplication of Y in (6) is the YC term, it is clear that
the analysis of [15] can be directly applied to linearizations of this more general type. Hence, the
following n decoupled k-dimensional equations are obtained
dwi

dt
¼ fP þ KiQgwi: ð7Þ
In the next section, we shall see that the linearization that results from a metapopulation for-
mulation of a standard epidemiological model can be written in the form (6), enabling the
deployment of the results of this section.
3. Metapopulation SEIR models

A standard metapopulation version of the deterministic susceptible/exposed/infective/recovered
(SEIR) model for a non-fatal disease which confers permanent immunity upon recovery can be
written as
dSi
dt

¼ l � lSi � Si
Xn

j¼1
bijIj; ð8Þ

dEi

dt
¼ Si

Xn

j¼1
bijIj � ðl þ rÞEi; ð9Þ

dIi
dt

¼ rEi � ðl þ cÞIi: ð10Þ
Here, Si, Ei and Ii denote the fractions of the occupants of the ith patch which are susceptible,
exposed and infective. It is assumed that the population sizes of each patch are identical and
remain constant. This corresponds to assuming that the population birth and death rates, denoted
by l, are equal and implies that the density of recovered individuals, Ri, is given by
Ri ¼ 1� Si � Ei � Ii. The average lifespan of individuals, L, can be seen to equal 1=l.
A simple description of the disease process is employed: individuals are born susceptible and

can acquire infection from infective individuals, at which point they enter the exposed class. After
a latent period, lasting an average of 1=r time units, individuals are infectious for an average of
1=c time units. Since the population is subject to a disease-independent mortality rate, l, the
mortality-corrected average duration of infectiousness, written as s, equals 1=ðc þ lÞ, and the
fraction, fS, of exposed individuals who will become infectives is r=ðl þ rÞ. Notice that when
the latent and infectious periods are short compared to the lifespan, then s 	 1=c and fS 	 1.
The beta matrix, whose entries equal bij, describes the transmission between and within pat-

ches. This formulation of the model assumes that there is an epidemiological cross-coupling be-
tween patches, but that individuals do not migrate between patches. This might be thought of as
arising from a situation in which individuals make short-lived visits from their home patch to
other patches. It is often assumed that within-patch mixing is stronger (and often considerably
stronger) than between-patch mixing, and hence that the between-patch transmission parameters
are small compared to the within-patch transmission parameters.
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An alternative model formulation considers the mechanism by which cross-coupling arises in
more detail, explicitly modeling the migration of individuals between patches [16]. This formu-
lation was extensively used in an early Russian attempt to model influenza epidemics (see,
for example, [5], and the review of Bailey [3]; see also [26]). Such a model can be written in the
form
dSi
dt

¼ l � lSi � biSiIi þ Xð1Þ
i ðSÞ; ð11Þ

dEi

dt
¼ biSiIi � ðl þ rÞEi þ Xð2Þ

i ðEÞ; ð12Þ

dIi
dt

¼ rEi � ðl þ cÞIi þ Xð3Þ
i ðIÞ; ð13Þ
where the XðkÞ
i are functions describing the transport of individuals of different types between

patches. These functions need not be the same for all types of individuals: for instance, it might be
assumed that sick individuals are less likely to travel.
In uses of this formulation, transport has generally been described by a linear function which

mimics simple diffusion, and so the resulting model is exactly of the form (1), with migration being
described by matrices M and C that can be written in terms of the XðkÞ

i . The study of the stability
of its flat solutions proceeds exactly as in the general analysis of [15]. This study shall, therefore,
mainly focus on the first, cross-coupled, formulation. Interestingly, there are correspondences
between these two model formulations [4,16]. Notice that, as mentioned in Section 2.1, both the
interpretation and the properties of the matrix describing spatial coupling differ between the cross-
coupled and linear migration cases; detailed properties of the C matrix in the latter setting are
discussed in [15].

3.1. The structure of the beta matrix in the cross-coupled model

Throughout this study, we shall assume that the between-patch transmission process is sym-
metric and that the infection can be passed between any pair of patches, albeit possibly via
intermediate patches. This second assumption essentially means that the n-patch system cannot be
decomposed into non-interacting subsystems. In mathematical terms, the beta matrix is symmetric
and irreducible [22].
Symmetry of the beta matrix implies that its eigenvalues are real. Further information about

the eigenvalues is provided by the Perron–Frobenius theory for non-negative irreducible matrices
[22]. Such matrices can be shown to have a positive maximal eigenvalue, i.e. a real positive
eigenvalue whose modulus is greater than, or equal to, those of the remaining eigenvalues. The
corresponding maximal eigenvector is positive, and is the only (linearly independent) eigenvector
corresponding to this eigenvalue. Furthermore, the maximal eigenvector is the only non-negative
eigenvector of the matrix. If, as mentioned earlier, the maximal eigenvalue is denoted by K1, these
results show that the remaining eigenvalues of the beta matrix lie in the interval ½�K1;K1Þ.
The beta matrix must exhibit certain symmetries in order for flat solutions of the cross-coupled

model to exist. Eq. (8) shows that the sum of the entries of each row of the beta matrix must be
equal; this common row sum is written as bT . It is clear that bT is an eigenvalue of the beta matrix,
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with corresponding eigenvector ð1; . . . ; 1ÞT. Therefore, according to the Perron–Frobenius theory,
this eigenvalue is the maximal eigenvalue of the beta matrix.
Standard expressions for the basic reproductive number, R0, in heterogeneous populations

[8,11,17], show that R0 ¼ bT fSs, where the product fSs gives the average duration of infectious-
ness, corrected for mortality in the exposed and infectious classes.
We note that the eigenvalues of the beta matrix need be known in order to obtain the decoupled

equations corresponding to (7). Since one need not explicitly construct the transformation matrix,
A, the eigenvectors of the beta matrix need not be known explicitly. Their entries do, however,
contain useful spatial information regarding the nature of the modes. For instance, the Perron–
Frobenius theory shows that the eigenvector that corresponds to the maximal eigenvalue of the
beta matrix is positive and, therefore, always corresponds to an in-phase mode. Furthermore,
none of the remaining eigenvectors are non-negative: they must contain two entries that have
opposite sign and hence represent out-of-phase modes.
In the analysis of Section 5, we shall make use of the quantities di, defined as di ¼ 1� Ki=K1.

For a given mode, di is a measure of how far away the corresponding eigenvalue of the beta matrix
is from the maximal eigenvalue. By definition, d1 is equal to zero and the constraints on the
eigenvalues of the beta matrix imply that the remaining di lie between zero and two. When the
between-patch coupling is weak, the di take values close to zero. Values close to two can only be
achieved when between-patch transmission is much stronger than within-patch transmission, a
situation that is epidemiologically unlikely. The limiting value of two can only possibly be
attained when there is between-patch transmission but no within-patch transmission.
Some limited insight into the dependence of the eigenvalues of the beta matrix on the strengths

of within and between-patch coupling can be gained if the beta matrix can be written in the form
bðI ðnÞ þ /BÞ: ð14Þ

Here I ðnÞ is the n-dimensional identity matrix. The constant row sum property of the beta matrix
means that the matrix B, which describes the pattern of cross-coupling between patches, must
have constant row sums. This sum can be taken to be unity, and the parameter / is then a measure
of the relative strengths of between and within patch transmission.
If the eigenvalues of the B matrix are written as li, then the eigenvalues of the beta matrix (14)

are equal to bð1þ /liÞ. Because B is a non-negative symmetric matrix with row sums equal to one,
its eigenvalues are real and lie between )1 and 1 [22], and so the eigenvalues of the beta matrix lie
between bð1� /Þ and bð1þ /Þ, with the latter value being attained by the maximal eigenvalue,
bT . Notice that when / is small, i.e. the between-patch coupling is relatively weak, all of these
eigenvalues are close to the maximal eigenvalue.
The description of the beta matrix provided by (14) assumes that the within-patch transmission

parameter is a constant, independent of the strength of between-patch transmission. This implies
that R0 increases as the between-patch coupling, /, becomes stronger. This simplest cross-coupled
formulation essentially allows individuals to simultaneously infect others in more than one patch:
traveling individuals can still infect those in their �home� patch during their visits to other patches.
Many authors instead assume that R0 (and hence bT ) is independent of the spatial coupling: this can
easily be achieved by an appropriate renormalization of b. Since this assumption is routinely made
in the literature, we shall employ it here, partly to facilitate comparison of our results with those of
other authors. (In fact, this change has little impact on the analyses or results that follow.)
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For the beta matrix described by (14), the renormalization is achieved by replacing b with
b=ð1þ /Þ. The maximal eigenvalue of the beta matrix, bT , is then independent of / and equals b,
whilst the remaining eigenvalues lie between bð1� /Þ=ð1þ /Þ and b.

3.1.1. Particular forms of the beta matrix
Since expressions for the eigenvalues of certain symmetric matrices are well known, such

matrices suggest themselves as analytically useful choices for beta matrices. We shall discuss two
particular forms, although it should be realised that there are many other symmetric matrices
whose eigenvalues can be explicitly calculated (see [23] or appendix II of [21]).
The �equal coupling� beta matrix assumes that there is a certain transmission parameter, b,

within a patch and that there is an equal coupling between this patch and any other patch, with
the between-patch transmission parameter written as �b. The between-patch transmission
parameter is usually assumed to be smaller, and in most cases much smaller, than the within-patch
transmission parameter. As mentioned above, the parameter b is usually renormalized so that R0
is independent of �. This corresponds to scaling the beta matrix by the factor 1=ð1þ fn� 1g�Þ.
(Notice the intuitive origin of this scaling: the factor arises because each patch is connected to
ðn� 1Þ other patches.)
The (renormalized) beta matrix has maximal eigenvalue bT ¼ b and ðn� 1Þ repeated eigen-

values equal to bð1� �Þ=ð1þ fn� 1g�Þ. As mentioned above, the maximal eigenvalue corre-
sponds to an eigenvector of the form ð1; . . . ; 1ÞT, which represents a mode in which perturbations
about the endemic equilibrium are in phase. The eigenvectors corresponding to the repeated
eigenvalues can be written in the form ð1;�1; 0; . . . ; 0ÞT, with ðn� 2Þ zero entries and the
remaining two entries (which can be in any position in the vector) being non-zero but having
opposite signs. Written in this way, these eigenvectors describe modes in which ðn� 2Þ patches
exhibit no fluctuations and the perturbations in the remaining pair of patches have opposite
phases (i.e. they are 180 degrees out of phase). Notice, however, that this description of the out-
of-phase modes is not unique: because of the repeated eigenvalue, one can generate alternate sets
of independent eigenvectors (by taking linear combinations of the eigenvectors just discussed). In
any case, the eigenvectors always contain a mixture of negative and positive entries and therefore
correspond to out-of phase modes of the system.
The value of di corresponding to the out-of-phase modes is equal to n�=ð1þ fn� 1g�Þ. When

the between-patch transmission parameter is smaller than the within-patch transmission param-
eter, we see that these di lie between 0 and 1. As � tends to infinity, the value tends to n=ðn� 1Þ:
values approaching 2 are only possible for a two-patch setting in which the between-patch cou-
pling is very strong.

�Nearest neighbour coupling� assumes that the n patches have a one-dimensional arrangement,
with between-patch interactions restricted to neighboring patches. To avoid the edge effects that
would be associated with a linear chain, we imagine that the patches are arranged on a circle, so
the first and nth patches are neighbors. Making the assumption that R0 is independent of coupling
strength, the (renormalized) within-patch transmission parameter is taken to be b=ð1þ 2�Þ, and
the between-patch transmission parameter is �b=ð1þ 2�Þ. The eigenvalues of this beta matrix are
of the form bf1� 2� cosðjp=nÞg=ð1þ 2�Þ. If n is even then j takes the values 2; 4; . . . ; 2n, whereas
if n is odd then j takes the values 1; 3; . . . ; 2n� 1. The maximal eigenvalue, bT , is achieved when
j ¼ n and equals b.
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It is straightforward to see that the values of di for the out-of-phase modes in the nearest
neighbour case must be less than or equal to 4�=ð1þ 2�Þ. When � lies between 0 and 1, the largest
value of di for these modes lies between 0 and 4=3. In this case, the maximal possible value of 2 can
be attained regardless of the number of patches, but this only occurs as � tends to infinity.
4. Analysis of the cross-coupled epidemiological model

Writing x1jðtÞ ¼ SjðtÞ, x2jðtÞ ¼ EjðtÞ and x3jðtÞ ¼ IjðtÞ, the linearization of the model (8)–(10)
about a flat solution (for which SjðtÞ ¼ SðtÞ, EjðtÞ ¼ EðtÞ and IjðtÞ ¼ IðtÞ) is easily performed.
Taking partial derivatives of the right hand sides of (8)–(10) with respect to the variables xij, it is
immediately clear that most non-zero entries in this linearization arise from within-patch terms.
The only non-zero between-patch terms result from the partial derivatives of the cross-coupling
term, SiRbijIj, with respect to the Is; these partial derivatives are equal to Sbij. It is then
straightforward to see that the linearization can be written in the form (6). The matrix P , cor-
responding to the within-patch terms, is given by
P ¼
�l � IðtÞbT 0 0

IðtÞbT �ðl þ rÞ 0
0 r �ðl þ cÞ

0
@

1
A; ð15Þ
the entries of Q, corresponding to the between-patch terms, are zero, except for q1 3 ¼ �SðtÞ and
q2 3 ¼ SðtÞ, and the entries of C are bij. (In general, C is the transpose of the beta matrix, but here
this matrix is assumed to be symmetric.) Notice that the matrix Q is not a diagonal matrix,
reflecting the between-species nature of the between-patch coupling employed in the epidemio-
logical model (cf. the earlier discussion of [12]).
Use of the similarity transformation (defined above in terms of the eigenvectors of the beta

matrix, C) allows the linearization of the model to be written in the decoupled form (7). Since Q
contains only two non-zero entries, the transformed system can be written in the simple form
dwi

dt
¼ DiðsðtÞÞwi; ð16Þ
where the 3 · 3 matrix DiðsðtÞÞ has the following form
DiðsðtÞÞ ¼
�l � IðtÞbT 0 �SðtÞKi

IðtÞbT �ðl þ rÞ SðtÞKi

0 r �ðl þ cÞ

0
@

1
A: ð17Þ
The eigenvalues, k, of the Jacobian of the full spatial system at any time point can now be ob-
tained as the eigenvalues of the matrices Di. It is straightforward to show that they satisfy the
following cubic equations:
ðk þ l þ bT IðtÞÞðl þ r þ kÞðk þ l þ cÞ � SðtÞKirðk þ lÞ ¼ 0: ð18Þ

In the case of an SIR model, in which individuals become infectious as soon as they are infected
(i.e. the r ! 1 limit of the SEIR model), (18) simplifies to
ðk þ l þ bT IðtÞÞðk þ l þ cÞ � SðtÞKiðk þ lÞ ¼ 0: ð19Þ
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In an equilibrium situation, Eqs. (18) or (19) can be used directly to determine the linear stability
of the equilibrium. (This is not the case for non-equilibrium situations, such as periodic orbits,
since the Floquet multipliers that determine the stability of such orbits must be obtained by
integrating an equation of the form (7) over a complete orbit.) At the endemic equilibrium, for
which S ¼ 1=R0 and I ¼ lsð1� 1=R0Þ, Eqs. (18) and (19) reduce to those given in [19] (Eqs. (32)
and (33)).
5. An application: behavior near the endemic equilibrium of the SIR model

The behavior near the endemic equilibrium of the SIR model will now be examined in more
detail. Parameter values appropriate for a childhood disease, such as measles, will be employed.
For such diseases there is often a separation of timescales between the duration of infectiousness, s
(infection often lasts on the order of days), the average age at infection, denoted by A, and the
average lifespan, L. (Using the standard result R0 ¼ L=A [1], the separation between L and A can be
seen to reflect the large value of R0 for such diseases: e.g., R0 	 15 for measles [1].) In the following
analyses, therefore, it shall be assumed that s  A  L.
Eq. (19) describing the stability of the modes of the spatial system can be rewritten as
k2 þ k
1

A

�
þ 1

s
� Ki

R0

�
þ l

R0
s

�
� Ki

R0

	
¼ 0: ð20Þ
Since R0 ¼ K1s, it is convenient to rewrite this quadratic as
k2 þ k
1

A

�
þ di

s

�
þ l

s
R0½ � ð1� diÞ� ¼ 0; ð21Þ
where di ¼ 1� Ki=K1; as defined above. We notice that, since 06 di 6 2 and R0 � 1, the constant
term of the quadratic (21) is well approximated by 1=ðAsÞ. For simplicity, we employ this
approximation in the following analysis.
Application of the Routh–Hurwitz conditions (see, for example, appendix II of [21]) to (21)

immediately shows that all modes of the system are linearly stable when R0 > 1, as both the linear
and constant coefficients of the quadratic are positive in this case. This basic stability property is
as expected from general analyses of the stability of endemic equilibria of multi-group epidemic
models [11,17].
For the in-phase mode, which, as discussed above, corresponds to d1 ¼ 0, the quadratic (21)

simplifies somewhat. Since d1 ¼ 0, the coefficient of the linear term reduces to 1=A as the second
and third terms in the braces of the corresponding term of (20) cancel. The resulting quadratic is
familiar as it is precisely the expression which determines the stability of the endemic equilibrium
of the standard (homogeneous) SIR model [1], with R0 appropriately redefined to account for the
spatial coupling. The eigenvalue equation determining the stability of the in-phase mode is well
approximated by
k2 þ 1
A

k þ 1

As
¼ 0; ð22Þ



A.L. Lloyd, V.A.A. Jansen / Mathematical Biosciences 188 (2004) 1–16 11
which, given the separation of timescales in the model, has approximate roots
k 	 � 1

2A
� iffiffiffiffiffiffi

As
p : ð23Þ
The in-phase mode exhibits weakly damped oscillations towards the endemic equilibrium, with
oscillation period much shorter than the damping time.
For the out-of-phase modes, di is non-zero and so the coefficient of the linear term in (21)

consists of two terms. (Alternatively, this can be viewed as the non-cancellation of the second and
third terms in the braces of the corresponding term of (20).) The eigenvalue equation determining
the stability of the out-of-phase modes can be written as
k2 þ k
1

A

�
þ di

s

�
þ 1

As
¼ 0: ð24Þ
This quadratic has roots given by
k ¼ � 1

2A
� di

2s
� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

A
þ di

s

� �2
� 4

As

s
: ð25Þ
Examining the discriminant of (24), we see that these roots form a complex conjugate pair if
di <

ffiffiffiffiffiffiffiffiffiffi
4s=A

p
� s=A, otherwise they are both real.

In the former case, the roots have real parts equal to
Rek ¼ � 1

2A
� di

2s
: ð26Þ
Provided that di is greater than zero (i.e. that there is some coupling between patches), the out-of-
phase modes corresponding to these roots decay more rapidly than the in-phase mode.
In the latter case, comparison of the second and third terms of (25) shows that the out-of-phase

modes decay more rapidly than the in-phase mode unless di P 2� s=ð2AÞ. Notice, however, that
this constraint is extremely unlikely to be violated in reality: since s is much smaller than A, this
would require di to be very close to its maximum possible value of 2, and hence that the between-
patch coupling is much stronger than the within-patch coupling. (See the discussion of di values in
Sections 3.1 and 3.1.1.)
Taking the two cases together, we see that the in-phase mode is always the dominant mode of

the system provided that the between-patch coupling is non-zero and is not considerably greater
than the within-patch transmission parameter.
Use of the inequality

ffiffiffiffiffiffiffiffiffiffiffi
1� x

p
6 1� x=2 shows that when di is such that the roots (25) are real,

they satisfy k6 � 1=ðs þ AdiÞ. Approximate expressions for these roots can be obtained by using
the fact that s  A. Returning to the discriminant of (24), we see that an approximate condition
for there to be a pair of real roots of this equation is that di >

ffiffiffiffiffiffiffiffiffiffi
4s=A

p
. If di is neither too small, by

which we mean that Adi is large compared to s, nor too large, by which we mean that di is not too
close to two, then we see that, to a good approximation, the quadratic equation (25) has roots
k ¼ � di

2s
� di

2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4s

Ad2i

s
: ð27Þ
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We remark that the condition that di is not too small implies that the second term in the braces of
the linear coefficient of (24) dominates the first: the coefficient of the linear term is of the order of
1=s, as opposed to 1=A. The second condition on di is required because as di becomes large, the
two terms in the expression (27) for the larger root almost cancel, in which case it is no longer safe
to omit the terms of order 1=ð2AÞ.
The behavior of the out-of-phase modes, therefore, depends on the size of di. There is a wide

range of di values for which the out-of-phase modes decay on the fast timescale of s, as opposed to
the decay of the in-phase mode which occurs on the slower timescale of A. Provided that the
spatial coupling is weak enough that (26) holds, the ratio of the damping time of the in-phase
mode to that of an out-of-phase mode is given by 1þ Adi=s. In the equal coupling case this
expression simplifies to 1þ nA�=s, assuming that � is small. Notice that the value of � required to
make the decay of out-of-phase modes sufficiently rapid can then be obtained by rearranging this
ratio (cf. Eq. (50) of [19]).

5.1. A numerical example

We shall illustrate these results using parameter values appropriate for a childhood disease such
as measles, for which infection lasts on the order of a week and for which R0 is fairly large. We
take the average duration of infectiousness to be seven days, R0 (in the absence of coupling be-
tween patches) equal to 15 and assume an average lifespan of 50 years [1].
The real parts of the eigenvalues corresponding to the in-phase and out-of-phase modes for a

10 patch equally coupled system over a range of values of the coupling are illustrated in Fig.
1(a). Also shown are the values obtained using expression (23) for the in-phase mode, the
approximate expression (27) for the out-of-phase modes, which assumed that di was neither too
small nor too large, and expression (26) for the out-of-phase modes, which is an exact solu-
tion of (24) for values of di small enough that the quadratic has a complex conjugate pair of
roots.
As previous studies have shown, expression (23) provides an excellent approximation to the

eigenvalues of the in-phase mode. Expression (27) provides a surprisingly good approximation to
the real parts of the eigenvalues of the out-of-phase modes. Since the approximation that gave this
expression neglected the 1=A term in the linear coefficient of (24), we notice that this leads to the
discriminant of (24) being underestimated. The approximation, therefore, overestimates the
strength of coupling at which the eigenvalues of the out-of-phase modes change from being
complex to being purely real, as well as underestimating the difference between the real eigen-
values that are then seen. Recall that, as discussed in Section 3.1.1, the out-of-phase modes of this
system can be viewed as modes in which a pair of patches exhibit antiphase fluctuations (with the
eight remaining patches showing no fluctuations).
As long as the spatial coupling is not too weak, Fig. 1(a) confirms that the out-of-phase modes

decay much more rapidly than the in-phase mode. As the system approaches the endemic equi-
librium, it does so in such a fashion that the densities of infectives in each patch oscillate in phase.
Numerical integrations of SIR and SEIR models which illustrate this behavior can be found in
[19].
For comparison, Fig. 1(b) illustrates the real parts of the eigenvalues for in-phase and out-of-

phase modes of a 10 patch system for which nearest neighbor coupling is employed. The figure
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Fig. 1. (a) Real parts of the eigenvalues corresponding to the in-phase and out-of-phase modes of a 10 patch cross-

coupled SIR system with equal coupling between distinct pairs of patches. Thick solid curves denote exact values,

obtained by solving (21). The upper curve corresponds to the in-phase mode, and the lower curve, which has two

branches when � is sufficiently large, corresponds to the out-of-phase modes. The approximation (23) for the real part of
the eigenvalues of the in-phase mode is indistinguishable from the exact solution on the scale of this figure. The light

solid black curve denotes expression (26) for the real part of the eigenvalues of the out-of-phase modes, which is an

exact solution of (21) as long as the spatial coupling is not too strong. (Notice that this curve coincides with the curve

depicting the exact values when the roots corresponding to the out-of-phase modes form complex conjugate pairs.) The

broken black curves depict the approximation (27). Parameter values, as discussed in the text, are l ¼ 1=50 year�1,
R0 ¼ 15 (notice that, as discussed in the text, the corresponding value of b is renormalized so that R0 is independent of �)
and 1=c ¼ 7 days. (b) Real parts of the eigenvalues corresponding to the in-phase and out-of-phase modes of a 10 patch
cross-coupled SIR system with nearest neighbor coupling. The heavy (horizontal) curve denotes the in-phase mode and

the lighter curves the out-of-phase-modes. These eigenvalues were obtained numerically, although their values could

have been obtained straightforwardly using the analysis developed in the text. All parameter values as in (a).
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shares many of the features seen in the equal coupling case, although because the submaximal
eigenvalues of the beta matrix are either non-repeated or just 2-fold repeated (as opposed to being
ðn� 1Þ-fold repeated in the equal coupling case), many more distinct curves can be seen.
We remark that the difference between the timescales on which the in-phase and out-of-phase

modes decay is smaller than seen in Fig. 1(a), reflecting the fact that the submaximal eigenvalue of
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the beta matrix is closer to the maximal eigenvalue of the beta matrix than it was in the equally
coupled case (see Section 3.1.1). We should point out, however, that in order to make a fair direct
comparison between the two cases, one should perhaps rescale � to reflect the fact that each patch
is only connected to two others under nearest neighbor coupling, as opposed to ðn� 1Þ in the
equal coupling case.
6. Analysis of the migration model

Although the analysis of the epidemiological model with linear migration is covered by the
general analysis of [15], one special case is entirely straightforward, with simple and striking re-
sults, so we shall discuss it here.
If the migration term does not depend on the disease status of the individual, then the matrixM

in (1) is a diagonal matrix with entries m. The notation can be simplified by absorbing the constant
m into the matrix C, which now describes the pattern and strength of migration between patches.
Recall that the interpretation of this matrix differs between the migration and cross-coupled
models. For a flat solution, the migration terms must cancel and so C must have a zero eigenvalue
corresponding to an eigenvector ð1; . . . ; 1ÞT. Furthermore, all other eigenvalues, again written as
Ki, are real and negative (see [15] for a detailed discussion of the definition and properties of the
matrix C in the linear migration model).
As mentioned previously, for a spatially homogeneous equilibrium situation in such a setting,

(7) immediately shows that the eigenvalues of the full spatial system can be obtained by simply
adding Ki to those of the corresponding single-patch system.
As in the cross-coupled model, the maximal eigenvalue of the migration matrix corresponds to

an in-phase mode. Since this maximal eigenvalue equals zero, the equation determining the
(linear) stability of the in-phase mode is precisely that which determines the stability of the single-
patch system (i.e. Eq. (22) in the case of an SIR model). Since the remaining eigenvalues of the
migration matrix are negative, the eigenvalues of the out-of-phase modes have smaller negative
real parts and so decay more rapidly than the in-phase mode.
As an example, in the case of a two patch SIR model in which the (per capita) rate at which

individuals move between patches is given by �, it is easy to see that K1 ¼ 0 and K2 ¼ �2�. For the
situation described above, in which the real parts of the eigenvalues of the in-phase mode are
given by �1=ð2AÞ, the real parts of the eigenvalues of the out-of-phase mode are given by
�1=ð2AÞ � 2�. The ratio between the damping times of the in-phase and out-of-phase modes is
given by 1þ 4�A.
7. Discussion

The transform method discussed in this paper considerably simplifies the linear stability
analysis of spatially homogeneous states of a broad class of population models. In equilibrium
situations, the analysis provides an alternative derivation of the results obtained by Othmer and
Scriven in an important early paper [23]. This somewhat neglected study considered a general
model which allowed for cross-species interactions (see also [12,24]). We remark that an almost
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identical analysis can be carried out for discrete time metapopulation models, known as coupled
map lattice models, (see [15] for details).
Given that the eigenvalues of the beta matrix only differ by a quantity of magnitude �, which is

usually assumed to be small, the often large difference in the decay times of the in-phase and out-
of-phase modes might, at first, seem strange. This analysis shows that this behavior results from
the exact cancellation of two terms in the eigenvalue equation (20) for the in-phase mode. Fur-
thermore, as the difference in decay times between a given mode and the in-phase mode depends
on the size of di for that mode, the strength of coupling required for rapid synchronization can be
large when the beta matrix has a submaximal eigenvalue which lies close to the maximal eigen-
value. An example is provided by the nearest neighbor coupling discussed earlier: when the
number of patches, n, is large, the submaximal eigenvalue (which has the next-closest allowed
value of j to n) can be close to the maximal eigenvalue.
Whilst the analysis presented here provides a starting point for understanding the patterns of

synchrony seen in real-world outbreaks of childhood diseases, the model employed is an extremely
simplified description of the biology underlying such diseases. The major influences of seasonal
variations in disease transmission and demographic stochasticity on disease transmission have
been highlighted in several analyses of incidence records and modeling studies [2,6,9,16,20,25]. Eq.
(5) can be integrated to examine the linear stability of perturbations made to periodic solutions,
although this integration would almost certainly have to be carried out numerically. Since peri-
odic solutions allow a larger class of bifurcations than equilibrium solutions, such an analysis will
often be worthwhile as there can be qualitatively different results [14].
Trajectories in the non-seasonal model (assuming that R0 is greater than one) tend to the unique

endemic equilibrium, and so, at least in symmetric situations, the above analysis of flat solutions is
applicable. The inclusion of seasonality can lead to the maintenance of phase differences between
patches: many non-flat attracting solutions exist [19,27]. Analyses of the form presented here are
not applicable for such solutions. In those cases, understanding the synchrony or asynchrony seen
between outbreaks requires a global analysis which accounts for the basins of attraction of dif-
ferent solutions. Even in situations for which the long-term behavior of each patch is of a simple
periodic form, there can be sensitive dependence on initial conditions indicative of complex
transient dynamics [19].
Stochasticity further complicates the situation: randomness tends to desynchronize patches,

although in many cases this effect is not strong enough to overcome the synchronizing effect of
spatial coupling described above. The importance of random effects can be assessed using moment
equations [10,13,16,18], which can be used to estimate the correlation seen between the time series
of infectives in different patches [16]. An interesting question which remains open is the extent to
which the degree of correlation predicted by such moment equations corresponds to the relative
decay rates of in-phase and out-of-phase modes of the corresponding deterministic system.
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