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Spatial heterogeneity is believed to play an important role in the persistence and dynamics of epidemics
of childhood diseases because asynchrony between populations within different regions allows global
persistence, even if the disease dies out locally. A simple multi-patch (metapopulation) model for spatial
heterogeneity in epidemics is analysed and we examine conditions under which patches become
synchronized. We show that the patches in non-seasonal deterministic models often oscillate in phase
for all but the weakest between patch coupling. Synchronization is also seen for stochastic models,
although slightly stronger coupling is needed to overcome the random effects. We demonstrate that the
inclusion of seasonal forcing in deterministic models can lead to the maintenance of phase differences
between patches. Complex dynamic behaviour is observed in the seasonally forced spatial model, along
with the coexistence of many different behaviours. Compared to the non-spatial model, chaotic solutions
are observed for weaker seasonal forcing; these solutions have a more realistic minimum number of
infectives.
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1. Introduction

Much of the theoretical discussion of the dynamics of
epidemics of childhood diseases has centred on the
susceptible, exposed, infective and recovered (SEIR)
compartmental model (Anderson & May, 1991 and
references therein). The long-term dynamics of the
basic model are simple: either the disease dies out or
a stable equilibrium is reached in which the disease is
endemic. A threshold condition determines which of
these two fixed points is stable. If the value of the
basic reproductive ratio (R0, as defined below) is
greater than one, the system settles down in the
endemic state. In this case, the equilibrium is
approached via damped oscillations.

Many childhood diseases exhibit recurrent epi-
demics, however, often with annual or biennial cycles.
Such oscillations are sustained in the model if a
stochastic formulation of the SEIR equations is used,
as the random effects prevent the system from settling
into the stable endemic equilibrium (Bartlett, 1957;
Bartlett, 1960). In the deterministic framework,

oscillations can be sustained if the contact rate is
allowed to vary seasonally (London & Yorke, 1973;
Dietz, 1976). When the deterministic model is
seasonally forced, a wide range of complex dynamic
behaviour is seen, including chaos and coexisting
cycles of different periods (Schwartz, 1985; Olsen &
Schaffer, 1990; Engbert & Drepper, 1994). Much of
this complex behaviour is only seen, however, when
the system is strongly forced, and many authors argue
that the degree of seasonal forcing required is
unrealistic (Pool, 1989). There are other deficiencies in
the model’s behaviour, such as the frequency of
fade-outs (episodes where there are no new cases of
the disease) and the often unrealistically small number
of infective individuals during minima, for instance as
low as 10−10 of population size (Bolker & Grenfell,
1993). Such a low number of infectives is clearly at
variance with the recurrent nature of the epidemics.

Various kinds of heterogeneities have been
proposed as answers to these problems. Age structure
has been most widely studied (Anderson & May,
1984, 1991; Schenzle, 1984). It clearly plays an
important role as children within the same schools
spend a lot of time together during the term, which
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causes an increase in the probability of disease
transmission between individuals within these age
classes. The opening and closing of schools is the
main cause of the seasonal forcing discussed above.
Age structured models can reproduce the observed
disease incidences fairly well and also lead to more
realistic estimates of the average age, A, at which
individuals acquire infection (Schenzle, 1984). Their
dynamics tends to be less complex than those of
strongly seasonally forced models (Bolker & Grenfell,
1993). This has led advocates of the importance of
complex dynamics in epidemics to claim that the
(more complex) age structured models do not
reproduce the observed dynamics as well as their
strongly forced seasonal models (Tidd et al., 1993; see
also Grenfell et al., 1994a, in which the basis of the
analysis of Tidd et al. is questioned).

It has been suggested that spatial heterogeneity
may address many of the deficiencies of epidemic
models. At the simplest level these heterogeneities are
included by adding an immigration term, where
infective individuals enter the system at a constant
rate (Olsen et al., 1988; Engbert & Drepper, 1994).
This clearly allows the persistence of the disease
because if it dies out in one region then the arrival of
an infective from elsewhere can trigger another
epidemic. Indeed, the arrival of new infectives
has been demonstrated as being important in the
outbreaks of measles observed in Iceland, a small
island community (Cliff et al., 1993). A constant
immigration term has a mildly stabilizing effect on the
dynamics, and tends to increase the minimum number
of infective individuals observed in the models
(Bolker & Grenfell, 1995).

A more sophisticated way of introducing spatial
effects into the model is to divide the population into
n subpopulations and allow infective individuals
in one patch to infect susceptible individuals in
another. The equilibrium behaviour of such models
has been studied widely (Lajmanovich & Yorke,
1976; Hethcote, 1978; Nold, 1980; Post et al., 1983;
Hethcote & Thieme, 1985; Hethcote & Van Ark,
1987), particularly with regard to the effects of spatial
heterogeneity on the design of immunization pro-
grammes (Anderson & May, 1984; May & Anderson,
1984). Simulation studies have been presented
(Murray & Cliff, 1975), and it has been shown that
spatial heterogeneity can reduce the occurrence of
fade-outs in epidemic models (Bolker & Grenfell,
1995; Grenfell et al., 1995). Some attention has been
directed towards understanding the dynamics of
spatial models (Schwartz, 1992; Bolker & Grenfell,
1995; Grenfell et al., 1995). If spatial effects are
important for the persistence of the disease it is crucial

to examine phase differences between oscillations in
different patches in the model. If all the patches
become synchronized, then we have essentially
recovered the homogeneous system, and spatial
effects (at least within the model framework) will not
be able to explain persistence. As part of his seminal
work on epidemic models, Bartlett (1956) considered
a two patch spatial model for which he demonstrated
that both patches oscillate in phase as the system
approaches its endemic equilibrium, although no
estimate was given of the speed at which synchroniza-
tion occurs. Bartlett anticipated that similar be-
haviour would be seen for many patch models, and
we show here that this is the case.

This paper is organized as follows. Section 2
describes the general mathematical model. Section 3
examines the equilibrium properties of the model,
and, using a linear approximation, considers the way
in which the system approaches the endemic
equilibrium. In Section 3.1 we examine a symmetric
special case, and show that rapid synchronization of
the oscillations in different patches occurs for all
but the weakest between patch coupling. Section 4
presents deterministic and stochastic simulations of
the model, which illustrate the analytic results. The
effects of including seasonality in the deterministic
model are examined in Section 5.

2. The Model

The basic SEIR model can be written as a set
of three coupled nonlinear ordinary differential
equations:

dS
dt

= mN− mS− lS (1)

dE
dt

= lS−(m+s)E (2)

dI
dt

=sE−(m+ g)I (3)

l= bI. (4)

Here S, E, I and R represent the numbers of
susceptible, exposed (but not yet infectious), infec-
tious, and recovered individuals. It is assumed that
the number of births balances the number of deaths,
so that the total population size, N=S+E+ I+R,
is constant. The average life expectancy, L, is 1/m, the
average latent period of the disease is 1/s, and the
average infectious period 1/g. The net infection rate
per susceptible, l, is known as the force of infection.
The constant b involved in calculating this rate is a
measure of the rate at which each infective makes
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effective contacts (those leading to transmission of the
disease) with each susceptible. This form of the model
assumes perfect mixing of the population; it allows no
heterogeneity.

In order to incorporate spatial effects we divide
the population into n subpopulations. The force of
infection in patch i is given by

li = s
n

j=1

bijIj . (5)

We assume the epidemiological system cannot be
decomposed into two or more non-interacting
sub-systems. In this case the population is said to be
connected (Lajmanovich & Yorke, 1976). This
generalized model can be written as

dSi

dt
= mNi − mSi − liSi (6)

dEi

dt
= liSi −(m+s)Ei (7)

dIi

dt
=sEi −(m+ g)Ii . (8)

We assume that the total population of each patch
remains constant, that is the number of births exactly
balances the number of deaths and that individuals do
not move permanently from one patch to another:
Ni =Si +Ei + Ii +Ri .

If the number of patches is set to equal one, then
the system of equations reduces to the standard
homogeneous SEIR equations. If the latent period
tends to zero, corresponding to s4a, there will not
be any individuals in the exposed classes, and the
model reduces to a susceptible, infective and
recovered (SIR) model. The analysis in the SIR case
is much simpler than that for the full SEIR system,
and in much of what follows we shall only examine
this limiting case. We do not include age structure in
our model as this increases both the number of
variables and parameters within it, making the effects
of spatial heterogeneity less transparent.

3. Equilibrium and stability analyses

The equilibrium values of S, E, I and hence R in
each patch are given by

S*i =
mNi

m+ l*i
(9)

E*i =
l*i

(m+s)
mNi

(m+ l*i )
(10)

I*i =
s

(m+ g)
l*i

(m+s)
mNi

(m+ l*i )
. (11)

Then, substituting into eqn (5) for l*i , we get

l*i =
s

(m+ g)
m

(m+s)
s
n

j=1

bij
l*j Nj

(m+ l*j )
. (12)

In principle, eqn (12) can be solved for the n variables
l*i and then everything else is known. Alternatively,
the equilibrium can be found by eliminating S*i and
E*i and solving the following equations

ml*i =6 smNi

(m+s)(m+ g)
− I*i 7 s

n

j=1

bijI*j . (13)

Just as in the homogenous case, there is a threshold
condition which determines whether the trivial fixed
point (with S*i =Ni and E*i = I*i =0) is stable or
whether the endemic equilibrium exists and is stable.
Above the threshold, Lajmanovich & Yorke (1976)
proved that the equations for I*i have a unique
solution with 0Q I*i QNi , which means there is a
unique endemic equilibrium. The threshold condition
is that the maximum of the real parts of the
eigenvalues of the matrix T is greater than one, where

Tij =
bijNis

(m+s)(m+ g)
. (14)

We are interested in how the system approaches the
endemic equilibrium; we linearize the system, writing
Si =S*i + si , Ei =E*i + ei , Ii = I*i + ki , li = l*i + li ,
where the perturbations are small (and time
dependent) and second and higher order terms are
ignored. Linearization leads to a set of linear first
order differential equations, whose solution is a linear
combination of exponentials. (If, as is seen below, the
system has an eigenvalue which is repeated m times,
the solution takes the form p(t)exp(Lt), where p(t)
is a polynomial of degree (m−1). Notice it is still
the exponential term which dominates growth or
decay.) Hence each variable is given time dependence
exp(Lt): si = s̃i exp(Lt), and so on. The time
derivatives of these quantities are simply given by
multiplying by L, and this gives the following set of
linear equations (where the tildes have been dropped
for convenience)

Lsi =−msi − l*i si − liS*i (15)

Lei = l*i si + liS*i −(m+s)ei (16)

Lki =sei −(m+ g)ki (17)

Lli = s
j

bijk� j = s
j

bij (sej −(m+ g)kj ). (18)
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Algebraic manipulation gives the following
equation for the si

(L+ m+ l*i )si

−
s(L+ m)

(L+ m+ g)(L+ m+s)
S*i s

j

bijsj =0. (19)

Writing

Aij =(L+ m+ l*i )dij

−
s(L+ m)

(L+ m+ g)(L+ m+s)
S*i bij , (20)

the equation for the si can be rewritten in matrix form

As= 0, (21)

where s is a vector whose i-th component is si . Hence
we need

detA=0 (22)

for there to be a non-trivial solution. This polynomial
of degree 3n determines the values taken by L.

In certain special cases, analytic expressions for S*i ,
E*i , I*i and l*i can be obtained and the nature of the
stability of the equilibrium can be examined
analytically. One such case occurs when each patch is
of the same size (Ni =N) and the bij are such that
S*i =S*, E*i =E*, I*i = I* and l*i = l*, indepen-
dently of i. The quadratic for l* can be solved to give

l*=
msN

(m+ g)(m+s)
s
n

j=1

bij − m. (23)

Once l* is known, then S*, E* and I* can be
calculated. Notice that the expression for l* requires
the sum Sn

j=1 bij to be independent of i. The matrix T,
defined by eqn (14), is such that the sum of all
entries in each row is the same. It therefore has an
eigenvector which has a one in every entry, and the
corresponding eigenvalue is

R0 =
sN

(m+s)(m+ g)
s
n

j=1

bij . (24)

If R0 q 1 then the endemic equilibrium exists and
is stable. The equilibrium values are

S*=N/R0 (25)

E*=
mN

m+s (1−1/R0) (26)

I*=
ms

(m+ g)(m+s)
N(1−1/R0) (27)

l*= m(R0 −1). (28)

In this situation, the matrix A, defined by equation
(20), can be written as follows

Ai j =
−s(L+ m)S*

(L+ m+ g)(L+ m+s)

×6bij −(L+ m+ l*)
(L+ m+ g)(L+ m+s)

s(L+ m)S*
dij7.
(29)

Hence, in eqn (22), det A is zero if det B is zero, where

Bij = bij −Gdij (30)

and

G=(L+ m+ l*)
(L+ m+ g)(L+ m+s)

s(L+ m)S*
. (31)

The values taken by G are simply the eigenvalues of
the b matrix. More detailed information about how
the system tends to the equilibrium can be obtained
by finding these eigenvalues and then solving the
following cubic equation for L.

G=(L+ mR0)
(L+ m+ g)(L+ m+s)

s(L+ m)N
R0 (32)

In the limit s4a, when the SEIR equations
reduce to the SIR equations, eqn (32) reduces to the
following quadratic

G=(L+ mR0)
(L+ m+ g)
(L+ m)N

R0, (33)

where the definition of R0 has been modified to

R0 =
N

(m+ g)
s
n

j=1

bij . (34)

In childhood diseases the timescale on which births
occur is much longer than the timescale on which
disease processes occur. In terms of the model
parameters, this is because s and g�m and mR0.
Anderson & May (1991) show that under these
conditions a cubic of the form (32) has one fast
decaying root, which is approximately −(g+s), and
two other roots given by a modified form of the
quadratic (33). This approximation could be used
here, but in order to keep the analysis simple we
consider the quadratic obtained in the SIR limit (i.e.
when s4a).

3.1.    

One example of a b matrix which naturally leads to
solutions of the form discussed above arises from a
symmetric situation in which the contact rate is the
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same within each patch, and another (usually
different and smaller) rate between each pair of
distinct patches. The b matrix takes the form

bij =6beb if i= j
otherwise

, (35)

with 0E eE 1.
Notice that the symmetry of the matrix implies

that the sum Sn
j=1 bij is independent of i. The basic

reproductive ratio is given by

R0 =
N

(m+ g)
b(ne+1− e). (36)

Notice that R0 depends on the number of patches and
the strength of the coupling. In many cases, it is this
overall value of R0 that can be estimated from
available epidemiological data and so in some models
the value of b is scaled according to the number of
patches and coupling strength (Grenfell, 1992;
Grenfell et al., 1995). We choose not to do this here
and it makes little difference to the analysis or in the
numerical simulations discussed later.

The b matrix defined by eqn (35) has eigenvalues
given by

G= b(1− e),

repeated (n−1) times, and

G= b(ne+1− e). (37)

If the eigenvectors of the b matrix are examined, it can
be seen that the single eigenvalue corresponds to an
in-phase mode, where the numbers of individuals in
each class in all patches oscillate in phase. This
corresponds to the homogeneous situation. The
repeated eigenvalues correspond to internal modes of
the system.

For the single eigenvalue, the quadratic (33) for L
simplifies (using the definition of R0) to

(L+ mR0)(L+ m+ g)− (m+ g)(L+ m)=0. (38)

This gives the standard equation for the stability of
the endemic equilibrium of the homogeneous SIR
equations

L2 + mR0L+ m(m+ g)(R0 −1)=0. (39)

As discussed in Dietz (1976) and Anderson & May
(1991), we write mR0 =1/A (A is the average age at
first infection) and 1/t= m+ g1 g (t is the average
duration of infectiousness). Then, as A�t, we
approximately have

L2 +
1
A

L+
1

At1 0. (40)

This quadratic has the approximate solutions

L1−
1

2A
2

i

zAt
(41)

which represents a weakly damped oscillation
towards the equilibrium, with the period of the
oscillation much shorter than the damping time.

For the repeated eigenvalue, the quadratic becomes

(L+ mR0)(L+ m+ g)(ne+1− e)

− (1− e)(L+ m)(m+ g)=0. (42)

Using the definitions of A and t given above, this
gives

L2 +$1
A

+
ne

t(1− e+ ne)%L
+

1
At $1−

mA(1− e)
ne+1− e%=0. (43)

Because A�t and mA=A/L�1, the eigenvalues are
given to an excellent approximation by

L2 +$1
A

+
ne

t(1− e+ ne)% L+
1

At=0. (44)

We write

ne
1− e+ ne=

1
a, (45)

which gives a=1−1/n+1/(ne). Unless a is very
large, the term in square brackets in equation (44) is
of the order of 1/t, and the 1/A term may be
neglected. If aQzA/(4t) then the resulting
quadratic has two real roots given by

L=
−1
2ta 2

1
2taX1−

4a2t
A

. (46)

Because z1− xE 1− x/2, the roots satisfy

LE −
a
A

. (47)

We have ae 1 (because eE 1) and so the internal
modes decay on a faster timescale than the overall
mode, which decays on the timescale of 2A.

If aezA/(4t), then the quadratic has roots with
real parts given by

ReL=
−1
2ta . (48)

Therefore, unless a is very large, the internal modes
are strongly damped, decaying on the fast timescale
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of t, compared with the overall mode which decays on
the timescale of A.

The above argument relies on a not being too large.
The internal modes can persist for longer if

a=1−
1
n

+
1
neiA

t . (49)

Because A�t, this condition can be rewritten as

eI0 t
A1 1

n
. (50)

In short, we see that—for all but the smallest values
of the coupling—the oscillations quickly become
phase locked.

Such an analysis can be repeated for other
symmetric choices of the couplings between patches,
such as one where the patches are taken to lie in a
linear array, and each patch interacts just with its
nearest two neighbours, or more generally in a way
which diminishes systematically with increasing patch
separation distance in the linear array. Phase locking
can result in these cases, although there can be special
circumstances under which the oscillations can drift
apart.

This result is based on a linear stability analysis of
the equilibrium and therefore only holds when the
system is close enough to the equilibrium for the
linearized system of equations to provide a good
description of the dynamics. If the equilibrium is
globally attracting, which is believed to be the case,
then this will occur once enough time has passed for
the system to be approaching the equilibrium. Before
this time, nonlinear effects may be able to increase
phase differences between oscillations in different
patches.

4. Simulation Results

The consequences of the above analytic results
can clearly be seen in simulations of coupled SEIR
(or SIR) models. For simplicity, we consider a
two patch model with the b matrix as given by (35).
We use the following set of parameter values: n=2,
N1 =N2 =106, m=0.02 year−1, g=73.0 year−1,
s=45.6 year−1 and b=0.0010107 year−1 infective−1.
These values were chosen because they have
previously been used in simulations of measles
epidemics (Olsen & Schaffer, 1990; Grenfell, 1992;
Bolker & Grenfell, 1993). The average latent period
(1/s) is 8 days and the infectious period (t) 5 days.
For the SIR simulations, we let s tend to infinity,
corresponding to a disease with no latent period and
an average infectious period of 5 days.

For the SIR case, the above expression for the basic
reproductive ratio gives R0 equal to about 13.8, when
e is zero. This gives A to be about 3.6 years and hence
rapid phase locking occurs when e is larger than
about 0.002. Figure 1(a) shows a simulation with the
coupling strength set equal to 0.01; the initial
conditions were chosen to be reasonably close to the
endemic equilibrium, but such that the oscillations
start in anti-phase. Phase locking is also seen to occur
for smaller couplings, but occurs more slowly
[Fig. 1(b), where e=0.001]. Similar behaviour is seen
in the SEIR case (results not shown).

Stochastic formulations of SEIR equations can
exhibit behaviour different from their deterministic
counterparts, as discussed earlier. The consequences
of stochasticity were studied using the standard
Monte Carlo simulation technique (Olsen & Schaffer,
1990; Grenfell, 1992). As in the spatially homo-
geneous stochastic case, the random effects cloud the
deterministic result. For small values of the coupling,
which lead to phase locking in the deterministic
system, the oscillations drift in and out of phase
[Fig. 1(c)]. This should be expected because the
coupling between patches is very weak and is easily
swamped by the random effects and, compared with
the deterministic case, the oscillations in the
stochastic system are much less regular. The relative
importance of stochasticity depends on the popu-
lation size, and so this effect is most visible in
simulations with small populations. For stronger
coupling, however, the patches do become synchro-
nized, even though the oscillations are fairly irregular
[Fig. 1(d)]. Notice that, even in this case where the
populations are oscillating in phase, the stochastic
effects cause the two populations to follow each other
less closely than they would in the deterministic case.

When the two patches are of unequal size we can
solve the equations for the equilibrium and its
stability numerically. An important question which
arises is the dependence of b (or equivalently R0) on
the size of the population in each patch. For large
community sizes, R0 is only weakly dependent on
community size (Anderson, 1982). This implies that
the coefficient bij should be inversely proportional to
Ni (Hethcote & Van Ark, 1987). Notice that if R0 were
strongly dependent on the size of the population then
the period of oscillation in each uncoupled patch
would depend strongly on its population size.

We let N1 equal 106 and N2 equal 2×106. The
bij coefficients are appropriately scaled to these
population sizes, and e is taken to be 0.02. The
numerically calculated values of L are approximately
−119, −117, −0.112 2.7i and −0.802 2.6i. The
first two values correspond to the approximate roots
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−(g+s) as discussed earlier. The remaining pairs
of values correspond to the damped oscillations of
the in-phase and internal models. The latter die
away more quickly than the former and so, after a
short time, the two patches oscillate in phase
[Fig. 1(e)].

5. Maintaining Phase Differences: Inclusion of

Seasonality

We have seen that coupling can often lead to
synchronization. The addition of spatial degrees of
freedom cannot, therefore, always explain the

F. 1. Simulation of two-patch SIR model with coupling parameter e equal to (a) 0.01, (b) 0.001. The two curves show the numbers
of infectives in the two patches, plotted on a logarithmic scale. Both simulations are started with the same initial conditions. Note the
different scales used in (b), reflecting the longer time taken for synchronization with the weaker coupling. Simulation of two patch stochastic
SEIR model with a coupling parameter e equal to (c) 0.002, (d) 0.02. With the weaker coupling in (c) the patches drift in and out of phase,
which can be seen, for instance, between 15 and 20 years, and 25 and 35 years. (e) Simulation of two unequally sized SEIR patches,
N2 =2N1 =2×106, with coupling e=0.02. In all cases, other parameter values are as defined in the text.
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deficiencies of the homogeneous model. If seasonal
forcing is included in the deterministic models then
phase differences can be maintained. In SEIR models,
a moderate level of seasonal forcing leads to a
solution which oscillates with a period which is an
integral number of years. The inclusion of seasonality
also imposes a definite phase on oscillatory solutions;
the minima occur at definite times of the year. In
unforced models the phase depends on the initial
conditions; the governing equations do not contain
time explicitly and hence there is nothing which
makes minima occur at certain times of the year.

We now consider the case in which we couple a pair
of patches whose seasonal forcing causes them to
undergo oscillations with a two year period. We use
the phenomenological form of forcing, in which the
contact rates vary sinusoidally

bij = b0
ij (1+ b1

ij cos 2pt). (51)

b1
ii is taken to be 0.2. We assume that there is no

seasonality in the coupling between patches, b1
ij =0

for i$ j. This assumption corresponds to the
situation where the patches are taken to be collections
of school catchment areas and so the increased
contact rate between children during term time is a
within-patch effect.

For a single uncoupled patch, this seasonal forcing
produces epidemics which have large maxima every
second year, with smaller peaks in the intervening
years. The seasonality forces the maxima to occur at
definite times of the year and so there are only two
possible phases that can be seen; the large maxima can
occur either in odd or in even years. This phase is
determined by the S, E and I values at time t=0. We
cannot easily depict the three dimensional plot
showing the phase as a function of the three initial
values, but a satisfactory compromise is a two
dimensional plot showing phase as a function of the
initial S and I values. The initial E is taken so that the
ratio of infective to exposed individuals is s/g
(Schwartz, 1985). (This E value is chosen since, after
a very short time, the numbers of infective and
exposed individuals are approximately linearly re-
lated, with their ratio being s/g to first order. This is
another consequence of the presence of multiple
timescales in the model, as discussed earlier.) Figure 2
is a plot showing how the phase depends on these
initial values, with each (S, I) pair on a 200 by 200
grid coloured according to the outcome starting from
these initial conditions.

Away from the fixed points, dependence of the
behaviour on the initial value depends sensitively on
initial conditions, and the figure shows self-similar
features. Long transients are often seen for these

F. 2. Plot showing dependence of the phase of biennial
oscillations on initial conditions. A white point is plotted if the
corresponding (S, I) pair leads to large epidemics in odd years, a
black point if large epidemics occur in even years. The initial value
of E is chosen so that I/E=s/g, as described in the text.

initial conditions, often lasting many hundreds of
years in the simulations. Such behaviour is associated
with the existence of a strange repelling set on which
trajectories behave chaotically for a while, but from
which they eventually escape. The properties of such
a set in the SEIR equations, and the implications of
its existence for epidemic models is considered by
Rand & Wilson (1991).

When the two patches are ‘‘coupled’’ with the
trivial coupling e=0, two different biennial be-
haviours are seen. Either both patches oscillate in
phase, or there is a one year phase difference between
them. The in-phase oscillations occur if both patches
have large epidemics in the same years. The basins of
attraction of the ‘‘coupled’’ system can be considered
as being a product of the basins of the uncoupled
system, but because of the high dimension of phase
space we cannot produce a satisfactory plot of them.

In-phase and out of phase biennial oscillations are
still seen as the coupling is strengthened. Larger
values of the coupling favour in-phase oscillations, as
one would expect as with large coupling the model
approaches that of a single homogeneously mixed
patch. These results echo those seen in another spatial
metapopulation model, the coupled logistic map,
where strong coupling causes patches to become
synchronized (Lloyd, 1995). The basin of attraction
for the in-phase solution grows, and that of the out
of phase shrinks as the coupling is increased. As the
coupled logistic map is only two dimensional, plots
showing these changing basins of attraction can be
produced (Lloyd, 1995).
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Other solutions become more commonly observed
as the coupling is strengthened. For instance, when
e=10−3, a chaotic solution is seen where both
patches exhibit variable amplitude oscillations
(Fig. 3). For one patch, these oscillations are
superimposed on a basic biennial cycle, and for the
other they are superimposed on a basic triennial cycle.
In order to confirm the chaotic nature of the system,
the (exponential) rate at which nearby trajectories
diverge was calculated using standard methods
(Eckmann & Ruelle, 1985; Wolf et al., 1985). This
quantity, known as the largest Lyapunov exponent of
the system, was found to be 0.0932 0.005 year−1; its
positive value demonstrates that the system shows
sensitivity to initial conditions and hence can be
chaotic for these parameter values.

The minimum number of infectives in either patch
is about one individual (about 10−6 of population
size); this occurs in the patch undergoing the larger
amplitude period three oscillations. The minimum in
the period two patch is about 50 individuals. We
notice that in the spatial system chaotic solutions are
possible for much weaker seasonal forcing and that
the minimum number of infectives in any patch is
much larger than in the chaotic non-spatial model.
Similar chaotic solutions have previously been
observed in spatial measles models (Schwartz, 1992),
although they were seen in the context of coupling a
large city undergoing a high period oscillation to a
small city undergoing annual oscillations. In the SEIR
equations it is quite common to observe a high period,
large amplitude solution coexisting with the low
period oscillation (Schwartz, 1985). Despite trying a
large number of initial conditions (over 5000), we did
not find such a high period solution for our set of
parameter values.

As we cannot make a complete exploration of the
possible initial conditions, we can never be sure that
further solutions do not exist: an attractor may easily
be missed if it has a small basin of attraction. One
technique for following the evolution of an attractor
as a parameter is changed is to alter the parameter in
small steps, using a point on the previous attractor as
the initial condition for the system after the parameter
is altered. This method is not so useful in this case
because long transients are often seen before the
system settles onto the new attractor, even if the
parameter value is changed by an extremely small
amount. The one-dimensional bifurcation diagram,
which summarizes the behaviour of a model as a
single parameter is altered (see, for example, Bolker
& Grenfell, 1993), is difficult to interpret here as it is
difficult to disentangle points which lie on coexisting
attractors.

6. Discussion

Clearly, the general behaviour of coupled season-
ally forced patch models is quite complex, and we do
not address the general behaviour here. Behaviour
with multiple attractors is common, and so the
qualitative nature of the dynamics may depend on
initial conditions as well as on the values taken by the
various parameters. This will become more pro-
nounced as the number of patches is increased, or if
individual patches exhibit higher period or more
complex dynamics. If stochasticity, such as the
demographic stochasticity discussed earlier, is in-
cluded in the model then it may be possible for the
random effects to move the system from one attractor
into another, for instance from biennial into triennial
oscillations. Furthermore, some solutions may have
small basins of attraction or exist only for small sets
of parameter values, and so are easily missed in a
numerical study. We have also assumed, in common
with many epidemiological modellers, that demo-
graphic parameters such as the birth and death rates
are constant. The effects of demographic changes can
be observed, for instance, in the England and Wales
measles incidence time series where the effects of the
‘‘baby-boom’’ following the war are clearly seen
(Grenfell et al., 1994b).

The data for measles incidence in England and
Wales is available on a city-by-city scale, allowing the
simulation results to be compared with a real
epidemiological system. In the post war years, before
the introduction of mass vaccination, the epidemics in
various cities generally occurred at biennial intervals,
and were mainly in phase (Grenfell et al., 1994a).
During other periods, out of phase biennial

F. 3. Numbers of infectives in the two patches for the chaotic
solution seen when two patches undergoing biennial oscillations are
coupled with e=10−3 (note the linear scale). The simulations were
run for 500 years before results were recorded in order to run off
any transient behaviour.
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oscillations have been seen, for instance between
London and Birmingham in the period between the
world wars (Bryan Grenfell, personal communi-
cation). With the introduction of mass vaccination
during the sixties, which reduced the size of
epidemics, a change in pattern was seen, with a
reduced coherence between oscillations in different
cities. A similar change was observed in the United
States (Cliff et al., 1992).

A simple modification to the SEIR model allows
the effects of vaccination to be studied (Anderson &
May, 1991). It is assumed that a fraction p of infants
are vaccinated at birth, and move immediately into
the recovered class. The term mN representing the
birth of new susceptibles is replaced by mN(1− p).
Vaccination reduces the value of R0, leading to an
increase in the average age at infection (A). Equation
(50) suggests that this change would increase the
tendency for patches to become synchronized, which
is the opposite of what is seen in the observed time
series. Deterministic and stochastic simulations of the
unforced system echo the analytic result, showing an
increase in coherence after vaccination. The analytic
result is obtained from a linear approximation to a
model which itself neglects age structure and
seasonality. In addition, vaccination reduces the size
of the population which can be involved in the
epidemic process, increasing the effects of demo-
graphic stochasticity. Clearly, some or all of these
factors need to be retained in order to obtain realistic
simulations. Models including all of these effects do
show a decreased coherence between patches after the
introduction of vaccination (Grenfell & Bolker,
manuscript in preparation), and preliminary investi-
gations of our own show that decreased coherence is
seen in seasonally forced, non-age structured
stochastic models.

Grenfell et al. (1995) show that stronger seasonal
forcing leads to increasing synchrony between
patches, and a higher proportion of fade-outs. In
seasonally forced spatial models, there is a complex
interaction between the within-patch dynamics and
the two forms of forcing; seasonal and spatial
coupling, with high levels of either kind of forcing
often leading to synchrony. As found in other
metapopulation models, strong spatial coupling
effectively reduces the system to a single patch. In
contrast with other metapopulation models (for
example Allen et al., 1993), Grenfell et al. (1995) show
that coupling chaotic patches (i.e. those with strong
seasonal forcing) does not lead to greater asynchrony
between patches.

Other forms of heterogeneity, such as age structure
or genetic heterogeneity, can be incorporated into the

basic SEIR framework using a methodology fairly
similar to that described here (Anderson & May,
1991). The analysis laid out above can be altered in
a straightforward way to cover these situations. We
would not be surprised to see subpopulations in other
unforced models to become synchronized in a similar
way.

The study of spatially extended systems poses many
interesting challenges throughout ecology. One lesson
which should be learnt from this simple model is that
it may be essential to incorporate many biological
factors, such as seasonality, demographic or environ-
mental stochasticity, as well as other heterogeneities
such as age structure, into the model. One of the most
exciting avenues for future work is the study of the
disease incidence time series which contain spatial
data, such as the England and Wales series mentioned
above. These give important information regarding
the spatial processes involved in epidemics (Cliff
et al., 1993), and their use should help in the
construction of more realistic spatial models.

We wish to thank Bryan Grenfell for discussions and
comments on the manuscript. A.L.L. is supported by
the Wellcome Trust (Biomathematical Scholarship, grant
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