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A simple model consisting of two diffusively coupled logistic maps is used to examine the effects of spatial
heterogeneity on population dynamics. Examining the dynamic behaviour of the model using numerical
methods, a wide range of behaviours are observed. It is shown that the coupling can stabilize individually
chaotic populations, and that under different circumstances the coupling can cause individually stable
periodic populations to undergo more complex behaviour. The system exhibits multiple attractors when
the qualitative dynamics of the system depend on the initial conditions. Sudden changes in the structure
of the attractors are seen for small changes in the parameters; these changes are known as crises. Transient
and intermittent behaviours are observed. The implications of all these behaviours for populations are
discussed. A linear coupling of the two maps is also considered which leads to counterintuitive behaviour,
with chaotic dynamics being obtained by coupling two stable maps. This behaviour occurs because the
coupling involves mixing of generations, and is therefore biologically unrealistic.

1. Introduction

Much attention has recently been focused on the effects
of spatial heterogeneity on population dynamics (Kot,
1989; Hassell et al., 1991; Comins et al., 1992; Allen
et al., 1993; Pascual, 1993). Spatial structure has been
suggested as an explanation for the observation that
chaotic dynamics, as generated by many simple
ecological models, is not widely seen in natural
systems. Another important recent result is that local
diffusive coupling can often stabilize a collection of
unstable populations (Hassell et al., 1991) whereas
random global dispersion either has no effect on
stability, or a detrimental one (Allen, 1975; Crowley,
1981; Reeve, 1988). The diffusive coupling can give rise
to spatial patterns such as spiral waves (as seen in
reaction diffusion systems such as the Belusov
Zhabotinskii reaction) or static ‘‘crystal lattices’’ as
well as spatial chaos.

In this paper I consider the simplest possible model
to include spatial effects, namely two coupled logistic
maps. This two-dimensional system exhibits a much
wider range of dynamic behaviour than the single
logistic map, but is still simple enough to allow its

dynamics to be thoroughly studied. I show that
coupling chaotic maps can lead to stable, non-chaotic
behaviour and that coupling two maps which show
periodic behaviour can lead to quasiperiodicity. For
large areas of parameter space multiple attractors
exist, i.e. the qualitative behaviour of the system
depends on the initial conditions. This final result
has important consequences for the population
dynamics as well as providing an important lesson for
the modeller of such systems.

2. The Model

Consider the simplest biologically realistic model
that incorporates spatial effects, two coupled logistic
maps (Hastings, 1993; Gyllenberg et al., 1993). In
terms of non-dimensional variables, this has the form

xn+1=(1−a)f(xn )+af(yn )

yn+1=(1−a)f(yn )+af(xn ), (1)

where

f(x)=mx(1−x).
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This model supposes that the environment
consists of two patches between which the individuals
diffuse. We assume that there is a density-dependent
phase followed by a dispersal phase. The density-
dependent phase is modelled by the logistic map,
and the dispersal phase by a simple exchange of a
fixed proportion of the populations. The parameter m

is the standard bifurcation parameter for the logistic
map (May, 1976) and a is a measure of the diffusion
of individuals between the two patches, with
0EaE0.5. We assume that the environment is
homogeneous, hence the bifurcation parameter m is the
same for both patches. The model is similar in spirit to
that of Hassell et al. (1991), whose host–parasitoid
model consists of a pair of variables at each of at least
900 lattice sites. The dynamics of this simpler
two-dimensional, two-parameter system will be much
easier to understand, and the insights gained by
studying it should shed light on the more complex
systems.

There are mathematically simpler ways to couple
two logistic maps: for instance we could have linear
coupling:

xn+1=f(xn )+a(yn−xn )

yn+1=f(yn )+a(xn−yn ). (2)

Another popular form of coupling is a bilinear
coupling, with the linear terms in (2) replaced by
2axnyn terms. These forms of the coupled logistic map
have been studied previously using both numerical (for
instance Kaneko, 1983; Hogg & Huberman, 1984;
Ferretti & Rahman, 1988; Satoh & Aihara, 1990a, b)
and analytic techniques (for instance Sakaguchi &
Tomita, 1987). Such forms for the coupling are not
biologically realistic as they involve mixing of
generations. Someof the individuals have been allowed
to reproduce and die and have also been allowed to
move into the other patch. We have examined the
effects that the different couplings have and we discuss
these below.

The behaviour of a single logistic map is well
understood, so the method we use to look at the
coupled maps is to fix m and vary a. In this way
we can study the effect of coupling maps whose
individual behaviour is known. First we choose a
m value for which the logistic map has a period 2n

orbit (n=0, 1, 2, . . .). We then investigate the coupled
systemusing analytic and numerical techniques, taking
due care when chaos is present. For many dynamical
systems the iterates of an initial point are seen to move
towards an attracting set (possibly one of many such

sets). Most of the interesting dynamics occur on these
attractors and so the behaviour of the system (after the
initial transient period) can be discussed in terms of the
dynamics of these sets.

The Lyapunov exponents l1 and l2 (Schuster,
1989) can be used to distinguish between chaotic,
quasiperiodic, periodic and fixed point behaviour.
These two exponents measure the long-term average
rates of divergence or convergence of nearby orbits
in this two dimensional system. We order them so
that l1 is larger. If l1 is positive then nearby orbits
diverge, there is sensitive dependence on initial
conditions and hence chaos. If l1 is zero the motion
is quasiperiodic and the attractor is a torus, in
our system this means a closed curve, and the
orbit never closes. (If the orbit closes after a
finite number of iterations, the attractor would be
a finite set of points on the torus, and would
therefore be a periodic orbit.) If l1 is negative then we
have a periodic orbit, a fixed point being a particular
example of this. Notice that the interpretation of the
dominant Lyapunov exponent is slightly different
when a system is continuous in time (see e.g. Pascual,
1993).

These exponents are calculated as the average of the
logarithms of the eigenvalues of the product Jacobian
matrix of the map. (The Jacobian matrix Df is the
two-dimensional derivative.) This is a difficult
numerical procedure since the n-step product matrix
(as n becomes large) has eigenvalues Ln

1 and Ln
2, often

with 0Q=L2=Q1Q=L1=. To overcome these problemswe
use a QR algorithm (Eckmann & Ruelle, 1985) which
decomposes the product matrix into a series of better
behaved matrices. In the special case of an in-phase
attractor (xn=yn for all n) it is easy to show that the
eigenvalues of the product Jacobian for the coupled
map are given by multiplying the derivative of the n-th
iterate of the uncoupled map by 1 or (1−2a)n. As a
result, one Lyapunov exponent is the same as that of
the logistic map at the same m value (regardless of a)
and the other is given by adding log(1−2a). This
means that if the single logistic map has a stable period
n attractor, then the coupled map will have a stable
in-phase period n attractor for all a. If the single logistic
map has a chaotic attractor, then for a close enough to
0.5, the second Lyapunov exponent will be negative
and an attractor will exist with x and y in phase and
behaving like a single logistic map at the same m

value. The global stability of the in-phase solution is
considered by Gyllenberg et al. (1993), who prove that
the in-phase solution attracts almost all initial
conditions when m and a lie in certain regions of
parameter space.
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3. Results

The single logistic map is a one-dimensional
unimodal map and as a result its dynamics are quite
limited (Devaney, 1989, discusses these in some detail).
In the logistic map only two routes to chaos are
observed (period doubling and intermittency),
the second dimension allows the quasiperiodic route to
occur. Quasiperiodic behaviour occurs when
additional frequencies are added to the motion by
means of Hopf bifurcations (see Appendix).

The single logistic map can only have one attracting
periodic orbit, but multiple attractors are seen in
our system, and it is quite easy to understand their
existence. Consider the trivial case where a=0 and
take (for instance) a m value for which the logistic map
has an attracting period n orbit. We have n points
{p1, p2, p3, . . . , pn} in the orbit for the logistic map.
If we set x0 to be equal to pi (for i between 1 and n)
and y0 equal to pj then in our coupled system (xn , yn )
will undergo period n oscillations, but if i and j are
different there will be a phase difference between xn

and yn . There are n such phase differences (including
the trivial case i=j ), and so n distinct attractors
will be seen. One attractor will be located on the
diagonal x=y and corresponds to i=j. If (m,a) is not
a bifurcation point, then we can change the parameter
values slightly without affecting the behaviour of the
system. We have thus demonstrated the existence of
multiple attractors for small positive a (a non-trivial
coupling). For some parameter values the difference
in dynamics of the attractors is more than just a phase
difference, for instance we demonstrate the coexis-
tence of attractors of different periods and the
coexistence of chaotic and periodic attractors.

The symmetry of the governing equations implies
that if {(xn , yn ),ne0} is an orbit then {(yn , xn ),ne0}
will also be one. If these two sets are the same then the
orbit is symmetric about the diagonal, otherwise the
orbit is not symmetric but there is another orbit which
is its mirror image. Hence the non-diagonal attractors
will either be symmetric about this line or will come in
symmetric pairs.

One way of summarizing the behaviour of a system
like (1) or (2) is to make a two-dimensional bifurcation
diagram (Satoh & Aihara, 1990a, b) consisting of a
grid of points in the (m, a) plane which we set to
different colours according to the behaviour seen at
each pair of parameter values. Such diagrams exhibit
beautiful fractal structure and self-similarity. How-
ever, the behaviour of the system not only depends on
the two parameters but also on the co-ordinates of
the initial point, so these diagrams really should be
four-dimensional as the set (m, a, x0, y0) is needed

to specify the behaviour. This point is acknowledged
by Satoh and Aihara, who claim that taking multiple
attractors into account does not change the broad
structure of the bifurcation diagram, just the fine
detail. Since the presentation of the full four-
dimensional bifurcation diagram is not easy, this
compromise seems well worth making.

In order to study the various attractors as fully as
possible, we adopt two strategies. The first is to use
many different initial conditions for a given a and m:
these are usually chosen at random. All of the
attractors should be seen if enough initial points are
chosen. However, if we are near to an a value where an
attractor is created or destroyed (call this a0), only
a small set of initial conditions may tend to the
attractor in which we are interested. In this case,
we choose an initial condition which tends to the
attractor when a is away from a0, and change a slowly
towards a0. Each time a is changed, we take the initial
condition to be a point on the attractor for the previous
a value. However, we must always be aware that it is
possible for attractors to be created and destroyed
during small changes in parameter values, and for
attractors to have very small basins of attraction. For
these reasons it is very easy to miss a lot of behaviour
in a numerical study.

3.1. m=2.9

For this parameter value, the logistic map has
two fixed points, one stable (x*=(m−1)/m) and one
unstable (m=0). For all a values almost all points
are attracted to (x*, x*); both populations tend to the
stable fixed point of the uncoupled logistic map. The
long-term behaviour of the system for this m value is
independent of the strength of the coupling.

3.2. m=3.2

For this parameter value, the logistic map has a
stable period-2 orbit and twounstable fixed points. For
a=0, both x and y perform period-2 oscillations and
the coupled map has two attractors. One lies on the
diagonal x=y, i.e. the two oscillations are in phase.
The other attractor is symmetric about the diagonal,
the two oscillations are out of phase (in anti-phase).
Figure 1 shows the basins of attraction for these two
attractors, the figure was produced by iterating
400×400 initial points in the unit square and colouring
the point according to the asymptotic behaviour of the
iterates (see also Hastings, 1993, and Gyllenberg et al.,
1993).

The structure of this diagram is easily under-
stood in terms of the uncoupled logistic map,
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F. 1. Basins of attraction for m=3.2, a=0. F. 3. Basins of attraction for m=3.2, a=0.01.

f(x)=mx(1−x). For an initial point (x0, y0), one needs
to know which points in the period two attractor x0 and
y0 tend to for even (or odd) iterations. In other words,
to which of the two stable fixed points of f 2 do x0 and
y0 tend?

Figure 2 shows the construction of the basins of
attraction of f 2(x). The interval I1 is invariant under f 2

and all points in its interior are attracted to the stable
fixed point inside I1, similarly the interval I2 is invariant
and all points in its interior are attracted to its stable
fixed point. The intervals I3 and I4 map onto I1 under
f 2, and interval I5 maps onto I2. We can continue this
process, decomposing the unit interval into a collection
of open intervals. Points on the boundaries of the
intervals get mapped to the unstable fixed point.

Thus when we ‘‘couple’’ two such maps with a=0,
the basins of attraction are open rectangles formed by
a cross product of the basins of attraction of the
uncoupled maps. For small couplings, this picture

essentially does not change. Figure 3 shows the basins
of attraction for a=0.01, and is topologically
equivalent to Fig. 1. As a increases, the basin of
attraction of the in phase solution grows and that of
the out of phase solution shrinks.

As we increase a, the in phase solution remains
stable but the out-of-phase solution loses its stability
near a=0.058. This change occurs by a pitchfork
bifurcation (Schuster, 1989) of the second iterate of the
coupled map, as two unstable points collide with a
stable point leaving a single unstable point. Figure 4
shows the basins of attraction just before
this bifurcation occurs. As a approaches the
bifurcation point, the basin of the out-of-phase
solution shrinks to a set of curves, as the in-phase
solution becomes globally stable. Both Hastings (1993)
and Gyllenberg et al. (1993) examine the existence and
stability of period-2 solutions of the map. The latter
paper gives analytic expressions for regions of

F. 2. Graph of f 2(x) (solid curve) showing decomposition of [0, 1] into open intervals that map to one of the stable fixed points of f 2

under iteration of f 2.
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F. 4. Basins of attraction for m=3.2, a=0.058, just before the
symmetric period-2 orbit loses stability.

F. 6. Basins of attraction for m=3.5, a=0.

destroyed in saddle-node bifurcations (Devaney, 1989)
as they collide with nearby unstable period-4 points.
This quasiperiodic attractor then undergoes a reverse
Hopf bifurcation when a is just below 0.0171, leaving
a stable period-2 orbit. The symmetric period-4 orbit
loses stability when a is just below 0.0364,
in a pitchfork bifurcation. The period-2 orbit loses
stability by a pitchfork bifurcation for a just
above 0.122, leaving the in-phase (diagonal) period-4
solution globally stable. Figure 8 is a plot of the largest
Lyapunov exponent for each attractor seen as a

increases from 0 to 0.15. The region for which
quasiperiodic behaviour occurs is clearly seen as a
range of a values forwhich this exponent is zero. Figure
9 shows the basins of attraction seen for various a

values.
We can continue in this fashion, coupling maps with

period 2n orbits; we see 2n attractors for a near 0 and
these attractors undergo bifurcations in a very similar
way to those previously described. In no case have we
observed chaotic behaviour arising as a consequence of
coupling such stable single maps. (Although, one must
remember the warning given before about the
possibility that the dynamics may change over small

parameter space within which the in-phase and
out-of-phase period-2 solutions are stable, which
provided a check for some of our numerical results.

3.3. m=3.5

For this parameter value, the logistic map has a
stable period-4 orbit, an unstable period-2 orbit, and
two unstable fixed points. For a=0 there are four
period-4 attractors, corresponding to x and y
undergoing period-4 oscillations with four phase
differences. The in phase attractor lies on the diagonal
and the anti-phase (xn=yn+2) attractor is symmetric
about the diagonal. The two remaining attractors are
asymmetric, with one being the mirror image of the
other. The four attractors are shown in Fig. 5 and their
basins of attraction in Fig. 6. The structure of the
basins of attraction is explained in the same way as for
the m=3.2 case, except that one looks at f 4 instead of
f 2.

As a is increased past about 0.0123, quasiperiodic
behaviour is observed as the two asymmetric period-4
orbits give way to a single attractor consisting of
two tori (Fig. 7). These stable period-4 points are

F. 5. The four period-4 attractors seen for m=3.5, a=0. (a) In phase (diagonal), (b) symmetric, (c) and (d) pair of asymmetric orbits.
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F. 7. Two-torus attractor seen for m=3.5, a=0.015.

is increased the attractor undergoes a complicated
sequence of changes. Many intervals of a values give
periodic behaviour, as is seen in the single logistic map
beyond the onset of chaos. As a result of this,
a numerical study of the systemwill tend tomiss a lot of
periodic behaviour. Before discussing these periodic
windows,weconsider themainchanges that the chaotic
attractor undergoes as the coupling is increased.

As a is increased between 0.0130 and 0.0135,
the single block chaotic attractor suddenly changes
into a two block attractor. A qualitative change in the
structure of the chaotic attractors has occurred, such
a change is known as a crisis. This type of crisis is called
an interior crisis (Grebogi et al., 1982, 1983; Sakaguchi
& Tomita, 1987), and it is most easily understood by
considering the attractors changing with decreasing a.
As a decreases, the two blocks of the attractor grow
and move closer together. At the crisis, the blocks
collide with an unstable fixed point on the basin
boundary (in this case the unstable point is (x*, x*), on
the diagonal). Points which come near enough to the
unstable point are then thrown out into the new part
of the attractor. The point then wanders around the
new part of the attractor for a while before returning
to the part of the attractor which existed before. As a
result, in the neighbourhood of the crisis very long
intermittent behaviour is observed, with the point
wandering around the two parts of the chaotic set for
periods of time with sudden jumps between the two.
Figure 10 shows the chaotic attractors in the vicinity
of the crisis.

As a is increased between 0.041 and 0.042,
we observe another crisis. The symmetric two-block

intervals of parameters or that attractors may be
created with very small basins of attraction.)

We now turn our attention to the situation when the
individual maps are chaotic. We couple maps whose
chaotic attractors have 2n band structure, that is
the attractor is contained within 2n sub-intervals of
[0, 1] which are invariant under f 2n and are permuted
by f.

3.4. m=3.7

The logistic map exhibits one band chaos for this
parameter value. When the maps are coupled with
a=0 we see just one attractor, which is square
and symmetric about the diagonal. As the coupling

F. 8. Plot of largest Lyapunov exponent (l) vs a for each of the attractors seen for m=3.5. Quasiperiodic behaviour is seen when l=0.
The pitchfork bifurcations are seen to occur as l becomes zero and the curves end.



    223

F. 9. Basins of attraction for m=3.5. (a) a=0.035, just before the
symmetric period-4 orbit is lost. (b) a=0.12, just before the period-2
orbit becomes unstable.

periods 2n are seen for ne2, the final result
of this cascade being a pair of asymmetric period-4
orbits. These orbits can be seen, for instance, when
a=0.056.

These period-4 orbits are destroyed in saddle node
bifurcations just below a=0.05614. The attractor
formed appears to be made up of two tori which are
very wavy near to where the periodic points used to be.
Such an attractor has been observed in other studies of
coupled maps (Hogg & Huberman, 1984; Kaneko,
1984), and its structure is studied in detail by Kaneko
(1984). The motion on this attractor appears to be
chaotic just above the bifurcation point (although this
chaos is punctuated by periodic windows). As the
coupling is increased, the waves become straightened
and the motion becomes quasiperiodic (Fig. 11.). This
attractor undergoes a reverse Hopf bifurcation when
a is between 0.0746 and 0.0747, giving rise to a period-2
orbit. The orbit becomes unstable just below 0.155 in
a pitchfork bifurcation. These last two bifurcations,
involving period-2 orbits, occur just as predicted by the
analytic results of Gyllenberg et al. (1993).

One example of a periodic window occurs when
0.0413QaQ0.0418, when a period-12 window is seen.
The window begins as a crisis turns the symmetric
two-block chaotic attractor into a pair of asymmetric
12-piece attractors. These attractors undergo a cascade
of further crises giving rise to 24, 48, and 96 pieces, and
so on. These crises accumulate at a certain a value,
which is the accumulation of a reverse period-doubling
cascade that follows. This cascade ends with a pair of
asymmetric period-12 orbits. Towards the end of the
window, long chaotic transients are seen before the
system settles down to periodic behaviour. The
periodic behaviour ends as the two stable period-12
orbits collide with and destroy two unstable period-12
orbits in two simultaneous saddle node bifurcations. A
bifurcation diagram for one of the attractors during
the window is shown in Fig. 12. (We plot 20000 xn

values for each a value, after allowing transients to die
out. When these are plotted on a scale from 0 to 1, they
are seen to cluster around 12 x values. Figure 12 is a
magnification of one of these clusters. The initial
condition is chosen so that the same attractor of the
pair is explored each time.) Notice the self-similarity
that is seen in this system; the bifurcation structure
within the window is very similar to the main
bifurcation sequence described above with crises and
reverse period doublings. Within the figure, we see
periodic windows which follow bifurcation sequences
similar to that of the whole figure. Just beyond the end
of the periodic window we observe intermittent
behaviour (Schuster, 1989). The iterates move very
slowly when they come near to where the fixed points

attractor splits into a pair of asymmetric four piece
attractors. This is known as an attractor merging crisis
(Ott, 1993). Intermittent behaviour is again observed
just before the crisis (for example at a=0.0419) with
iterates behaving almost as if there were two separate
attractors. The iterates are seen to move around
one-half of the attractor before being thrown onto the
other half, where they move around for a while before
returning to the first half.

A cascade of crises occurs as a is increased further,
resulting in a pair of asymmetric period 2n piece chaotic
attractors being seen. (For instance, eight pieces are
seen when a=0.048, 16 when a=0.0484.) These crises
accumulate just below 0.0486, which is also the
accumulation point of a cascade of reverse period
doublings which then follows. Periodic orbits of
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F. 10. Chaotic attractors in vicinity of the crisis, m=3.7. (a) Diagonal block attractor seen for a=0.012. (b) Symmetric two-block attractor
seen for a=0.0135.

used to be, and during these episodes the dynamics are
nearly periodic. Once the iterate has left this region the
motion becomes chaotic until the iterate comes close
to the region again. Over a long period of time
we observe nearly periodic dynamics punctuated by
episodes of chaotic behaviour.

For some a values within this bifurcation sequence
we see the creation of new attractors. For instance, just
above 0.0913 we see the creation of a chaotic attractor.
This attractor then undergoes various bifurcations
going from chaos to torus to a period-4 orbit, with
various periodic orbits interrupting this sequence.
The period-4 orbit disappears just below 0.1269 in
a pitchfork bifurcation. This procees is repeated in
the interval (0.1012, 0.1037). Figure 13 shows the
basins of attraction of the various attractors seen
when a=0.1018. (Points that start on the diagonal
will remain on the diagonal, undergoing chaotic

dynamics, even though the in phase set is not attracting
in this case. We do not show this behaviour on the
basins of attraction plot since there are points
arbitrarily close which tend to one of the attracting
sets.)

For large values of the coupling, the only attracting
set is an in-phase chaotic attractor, with both x and y
behaving as a single logistic map with m=3.7. The
in-phase chaotic set becomes an attractor as its smaller
Lyapunov exponent becomes negative when a is
between 0.149 and 0.150. Below this a value a
symmetric chaotic set is seen, although thismaybe very
long transient behaviour. For some a values below
0.149 the in-phase set appears to be an attractor even
though the smaller Lyapunov exponent is positive,
corresponding to points of the diagonal moving away
exponentially on average. We believe this is a
numerical effect caused by the finite precision of the

F. 11. Magnification of one of the two tori seen for m=3.7. (a) Wavy tori, a=0.0574. (b) a=0.604, notice the torus is less wavy (c) a=0.674,
when the tori have lost the waves.



    225

F. 12. Bifurcation structure observed during a periodic window when m=3.7. This figure is a magnification about one of the 12 clusters
of xn values seen. At the extreme left of the figure we see the crisis which gives rise to the window. A cascade of reverse crises follows, interrupted
by further periodic windows. Further right, a reverse period-doubling cascade can be seen. The window ends with a saddle node bifurcation
at the right of the figure.

computer arithmetic. If the iterate (xn , yn ) comes close
enough to the diagonal then the computer may set
xn=yn and all future iterates will then stay on the
diagonal. After the loss of the stable period two orbit
near 0.155, almost all initial conditions are attracted to
the in-phase chaotic attractor.

3.5. m=3.65

The individual maps show two-band chaos, for
no coupling we see two attractors; one consists of
two square blocks centred on the diagonal, and the
other is a symmetric pair of rectangular blocks. As
the coupling is increased, both of these attractors
undergo bifurcation sequences which are extremely
similar to that seen in the m=3.7 case. For this reason
we shall not give as much detail in describing these
sequences, instead we shall give an a value when each
different attractor described can be seen. (We do not
give the a values of the bifurcation points.)

The symmetric two-block attractor undergoes a
crisis, giving rise to a pair of asymmetric four-block
chaotic attractors (these new attractors can be seen, for
instance, when a=0.025). Later, these attractors
undergo a cascade of crises followed by a reverse
period-doubling cascade which ends up with a pair

of asymmetric period-4 orbits (a=0.042). These
are destroyed in saddle node bifurcations, leaving a
two-torus attractor with quasiperiodic dynamics
(a=0.047). In this casewe do not see chaotic behaviour
between the loss of the periodic orbits and the
quasiperiodic behaviour (although it could

F. 13. Basins of attraction for m=3.7, a=0.1018. Notice the
particularly detailed self-similar structure.
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F. 14. Basins of attraction for m=3.65, a=0.045.

of asymmetric period-4 orbits which resulted from the
symmetric two-block attractor.

As in the m=3.7 case, attractors are created which
undergo similar bifurcation sequences before being
destroyed. One example of this occurs within the
interval (0.070, 0.073). Figure 15 shows the basins
of attraction for a=0.070875, when a period-2 orbit
(the product of the symmetric two block), a four-torus
attractor (the product of the diagonal two block) and
a period-36 orbit (a product of the new attractor)
coexist.

For large values of the coupling, the only attracting
set is an in-phase chaotic attractor, with both x and y
behaving as a single logistic map with m=3.65.
The second Lyapunov exponent of the in phase set
becomes negative when a is near 0.113. After the loss
of the stable period two orbit near 0.147, almost all
initial conditions are attracted to the in-phase chaotic
attractor.

We have repeated these calculations for other m

values for which the logistic map shows 2n band chaos.
Similar bifurcation sequences are observed, with chaos
going to quasiperiodicity, then to periodic behaviour.
The in phase attractor is always favoured by large
values of the coupling, with both x and y behaving like
iterates of the single logistic map at the same m value.

4. The Effects of Linear Coupling

In this section we discuss how the results seen above
are changed if we employ a linear coupling, as in
eqns (2). This form of coupling may be considered as a
discrete space analogue of the Laplacian (92) coupling
used in reaction-diffusion equations. The linear

occur over a very small parameter range). A reverse
Hopf bifurcation causes the attractor to become a
period-2 orbit (a=0.06). This orbit loses stability in a
pitchfork bifurcation near 0.147.

The ‘‘diagonal’’ two block attractor undergoes a
similar bifurcation sequence. The attractor becomes a
symmetric four-block attractor in a crisis (a=0.057).
A complicated bifurcation sequence follows which
results in a quasiperiodic four-torus attractor being
seen (a=0.07). Later this becomes a symmetric
period-4 orbit in a reverse Hopf bifurcation (a=
0.075). The period-4 orbit finally loses stability in
a pitchfork bifurcation when a is near 0.109.
Once again, periodic windows are seen within this
bifurcation sequence.

Periodic windows are seen throughout the
chaotic parameter regions. For instance, we see
that the symmetric four-piece attractor has a large
periodic window within the interval (0.062, 0.064).
Within this window, in addition to period doublings
and crises, we see the multiple Hopf bifurcations
characteristic of the quasiperiodic route to chaos (see
Appendix). For a=0.06248, we see a period-44
(=4×11) orbit, and as we decrease a a Hopf
bifurcation occurs leaving 44 tori (for instance when
a=0.0624). As a is decreased further we see a
period-308 (=44×7) orbit (a=0.06212) which
undergoes a further Hopf bifurcation, giving rise to a
308-torus attractor (a= 0.06209). As a is decreased
further, the tori break up and the dynamics become
chaotic.

Figure 14 shows the basins of attraction seen for
a=0.045, when the chaotic attractor which is the
product of the diagonal two-block coexists with a pair F. 15. Basins of attraction for m=3.65, a=0.070875.
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F. 16. Structure of attractors for m=2.9 with linear coupling. (a) Two tori, a=0.27; (b) frequency locking (period 10), a=0.29; (c) one of
the asymmetric pair of 16 tori, a=0.326; (d) chaos, a=0.3314.

coupling is also mathematically convenient as it does
not introduce any extra nonlinear terms into the
equations. The coupling is not biologically realistic,
however, and it does cause some unexpected behaviour
to occur.

One example of this unexpected behaviour occurs
when we couple two logistic maps with m=2.9 using
linear coupling. For this parameter value, as discussed
previously, the logistic map has two fixed points; one
stable (x*=(m−1)/m) and one unstable (m=0).
For a $ [0, 0.05] almost all points are attracted to
(x*, x*). At a=0.05 this point becomes unstable as it
undergoes a period doubling bifurcation, creating a
stable period-2 attractor that is symmetric in (x, y):
{(x1, y1), (y1, x1)}.

As a increases further, the period-2 attractor
undergoes a Hopf bifurcation (at a just below 0.268),
producing two symmetric tori. These tori undergo a
complex sequence of bifurcations, including further
frequency lockings and Hopf bifurcations. One
example of frequency locking is seen between about
0.289 and 0.298 when a period-10 orbit is seen.
An asymmetric pair of period-16 orbits can be seen
when a=0.325; these undergo Hopf bifurcations,
producing an asymmetric pair of 16 tori which can
be seen, for instance, when a=0.3256. Chaotic
behaviour is seen as a is increased, for instance when
a=0.3314. Periodic windows are seen beyond this a

value, as they are in the single logistic map beyond
the onset of chaos. Figure 16 shows some of the
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attractors seen for this value of m as a varies. Multiple
attractors are seen for this value ofm, for examplewhen
a=0.325 a two-torus attractor coexists with the
period-16 orbits described above. This is in contrast to
the nonlinear coupling of the two maps at this m value,
when only one attractor was ever seen.

The coupling is seen to destabilize individually stable
maps, producing chaotic behaviour. We also observe
that the in-phase attractor is no longer favoured by
large couplings. Similar behaviour is observed for
other m values for which the logistic map exhibits stable
periodic behaviour. This counterintuitive behaviour is
purely a consequence of the incorrect coupling of the
two maps.

When two chaotic logistic maps are coupled in
this fashion, we again see that the coupling can lead to
stable behaviour. Bifurcation sequences similar
to those described for nonlinear coupling are seen.
As for the periodic maps, large coupling no longer
favours the in-phase attractor.

The dangers of coupling discrete time maps with
linear coupling terms have been noted before. Kot &
Schaffer (1986) developed integrodifference equations
to model growth and dispersal, and used nonlinear
couplings. In their paper they note that linear
couplings mix generations and may lead to counter-
intuitive results. Jackson (1990) considers coupling
maps in a more general context, and warns that
the diffusive process must be kept separate from the
reproductive process in order to keep in touch with
‘‘reality’’.

5. Discussion

The model shows many interesting types of
behaviour which may be important when considering
the dynamics of real populations. The most important
result is that the scale on which measurements of the
population is taken is crucial, and that information on
the distribution of the population is also necessary to
understand the dynamics. A similar result was found
by Sugihara et al. (1990) when analysing the monthly
incidence of measles in England and Wales. On a
city-by-city scale they found evidence of low-
dimensional chaos, whereas on a country-wide scale
the dynamics appeared to be a two-year noisy
cycle. Coupling can stabilize individually chaotic
subpopulations to give stable dynamics of the
population as a whole. The reverse is also seen with
quasiperiodic dynamics resulting from the coupling of
two populations that individually show identical
periodic behaviour.

We may ask what sort of dynamic behaviours are
preferable for thepopulationasawhole topersist. Ithas

beensuggestedthatchaoticbehaviourofthepopulation
as a whole may increase the probability of extinction
because (for many chaotic systems) there is a high
probability that the population density will eventually
go below an extinction threshold (Berryman &
Millstein, 1989). If the population is patchy this would
not necessarily be the case, unless the populations
in different patches were synchronized. In this system,
strongcouplingbetweenpatcheswill lead to thembeing
synchronized even if they were individually chaotic.
However, if the populations in different patches were
not synchronized, then diffusion between patches
would be able to counteract local extinctions. Similar
results have been seen in simulations where coupling
large arrays of chaotic Rössler attractors gave rise to
stable spiral patterns which could withstand the
obliteration of large parts of the spiral (Klevecz et al.,
1991). In weakly coupled systems it has been suggested
that chaos can amplify local population noise, leading
to a greater degree of asynchrony between local
populations (Allen et al., 1993).

The existence of multiple attractors means that
populations can exhibit very different dynamic
behaviours, even if per capita birth and death rates and
diffusion rates are the same. It is possible that a sudden
change in the populations due to some external cause
can move the system between these differ-
ent behaviours, in some cases from stable to chaotic
dynamics. If an attractor is close to the edge of its basin
of attraction then only a small perturbation
(for instance small amplitude random noise) may
be necessary to switch the system from one sort of
behaviour to another.

If the parameters of the model are allowed to
vary with time there can be dramatic changes in
the population dynamics. The crises and periodic
windows that were seen represent dramatic changes in
the behaviour for very small changes in the parameters.
In the vicinity of these changes, long episodes of
intermittent and transient behaviours are seen.
Populations may exhibit apparently periodic be-
haviour for long periods of time and then suddenly
undergo chaotic bursts before returning to almost
periodic behaviour. This means that if a population is
observed over a short period of time then the
interesting part of the dynamics may be missed, since
for most of the time the dynamics appear tame.

The multiple attractors pose a trap for the unwary
numerical experimenter. One method that has been
used to study eqns (2) is to fix one initial point and
consider iterates for deferent values of the coupling and
bifurcation parameters. Whilst this is fine for the single
logistic map (which has just one attracting set), this will
not do here. As parameters change so the basins of
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attraction grow and shrink, our one initial point may
find itself in a different basin and a change in behaviour
will be observed. This change in behaviour is due
entirely to the multiple attractors and not to some
change in the dynamics of the map. Many authors have
fallen into this trap; for instance Ferretti & Rahman
(1988) studied the map numerically by iterating the
single initial condition (0.5, 0.5).

6. Conclusions

The coupled logistic map exhibits a much wider
range of dynamic behaviour than the single logistic
map, much of which may be important to the study of
population dynamics. Intermittent behaviour may
lead to populations behaving almost periodically
for long periods of time but with short bursts of
apparently random behaviour. Crisis behaviour may
be more dramatic, with sudden changes in dynamic
behaviour occurring for small changes in the
parameters controlling the nature of the dynamics.
The spatial nature of the problem is seen to be
important, with the coupling able to cause individually
stable periodic populations to undergo quasiperiodic
dynamics, or able to stabilize individually chaotic
populations. More realistic models would include
better descriptions of the local dynamics (although for
simple models one tends to see similar types
of dynamics) and of the spatial degrees of freedom.The
latter would require the consideration of more patches
and a more detailed description of movement between
patches. Inhomogeneities in the environment could be
considered by varying the coupling and bifurcation
parameters across the lattice.
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APPENDIX

The Hopf Bifurcation and Quasiperiodicity

For most sets of parameter values, altering them
slightly does not change the qualitative behaviour
of the system. The changes in qualitative behaviour are
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known as bifurcations and the parameter values
at which they occur are called bifurcation points. Some
bifurcations only affect the dynamics in a small
neighbourhood; these are called local bifurcations.
Such bifurcations are associated with one or more of
the eigenvalues of the Jacobian matrix Df having
modulus one. (This is for a fixed point; for period
n orbits one considers the product Jacobian Df n.)
Two simple bifurcations which are observed in our
system are saddle node (where a pair of fixed points of
f n are produced, one stable and one unstable)
andperiod doubling (where a stable period norbit loses
its stability and a stable period 2n orbit is created),
these are both seen in the logistic map. The second
dimension allows other bifurcations to occur,
including the Hopf bifurcation.

The Hopf bifurcation occurs when a complex
conjugate pair of eigenvalues crosses the unit
circle (if there is a complex eigenvalue a+ib then
its complex conjugate a−ib is also an eigenvalue
as the Jacobian matrix is real). At this point a
fixed point undergoes a change in stability and an
invariant curve is created. This is most easily seen
in a simple example. Consider the following
two-dimensional map

F0xy1={l−(x2+y2)}0cos a −sin a

sin a cos a10xy1,

where a is fixed and l is a parameter.
The origin is always a fixed point and the Jacobian

has eigenvalues l(cos a+i sin a), both have modulus
=l = so they cross the unit circle as l increases through

one. If we change to polar co-ordinates (r, u) the map
becomes

rn+1=lrn−r3
n

un+1=un+a

For −1QlQ1 the origin is a stable fixed point, but
as l passes through one the origin loses its stability. At
the bifurcation point an invariant circle, r=zl−1, is
created which attracts nearby points. The dynamics on
the circle are given by

un+1=un+a.

If a is a rational multiple of 2p, a=(p/q)2p, then
the orbit will be periodic with period q. If a is an
irrational multiple of p then the orbit will not close up.
This is called a quasiperiodic orbit.

More generally, a Hopf bifurcation gives rise to
an invariant closed curve topologically equivalent to
a circle, and the dynamics of the map on this
curve can be more complicated than a simple
rotation. Higher iterates of the map may undergo
Hopf bifurcations, for instance a period n orbit may
give rise to quasiperiodic behaviour on n tori. As
the parameter varies, it is possible for more than one
Hopf bifurcation to occur. Such Hopf bifurcations are
involved in the various quasiperiodic routes to chaos
which have been proposed (Ruelle & Takens, 1971;
Newhouse et al., 1978; Curry & Yorke, 1978). These
routes to chaos have many universal properties, which
have been studied extensively (see Schuster, 1989, for
an excellent summary of these). For instance, one
feature that is often observed is frequency locking,
where the system exhibits periodic behaviour for quite
large windows of parameter values.


