
J. theor. Biol. (2002) 217, 137–148
doi:10.1006/yjtbi.3030, available online at http://www.idealibrary.com on
A Model for Estimating Total Parasite Load in
Falciparum Malaria Patients

Mike B. Gravenor*w, Alun L. Lloydz, Peter G. Kremsnery, Michel

A. Missinouy, Mike EnglishwO, Kevin MarshO and Dominic Kwiatkowskiw

wDepartment of Paediatrics, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, U.K.,
zProgram in Theoretical Biology, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540,
U.S.A. yMedical Research Unit, Albert Schweitzer Hospital, Lambaréné, Gabon and Department of
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We describe an age-structured mathematical model of the malaria parasite life cycle that
uses clinical observations of peripheral parasitaemia to estimate population dynamics of
sequestered parasites, which are hidden from the clinical investigator. First, the model was
tested on parasite populations cultured in vitro, and was found to account for B72% of the
variation in that sub-population of parasites that would have been sequestered in vivo. Next,
the model was applied to patients undergoing antimalarial therapy. Using individual data
sets we found that although the model fitted the peripheral parasite curves very well, unique
solutions for the fit could not be obtained; therefore, robust estimates of sequestered parasite
dynamics remained unavailable. We conclude that even given detailed data on individual
parasitaemia, estimates of sequestered numbers may be difficult to obtain. However, if data
on individuals undergoing similar therapy are collected at equal time intervals, some of these
problems may be overcome by estimating specific parameters over groups of patients. In this
manner we estimated sequestered parasite density in a group of patients sampled at identical
time points following antimalarial treatment. Using this approach we found significant
relationships between changes in parasite density, age structure and temperature that were
not apparent from the analysis of peripheral parasitaemia only. r 2002 Elsevier Science Ltd.
All rights reserved.
Introduction

Malaria parasites injected into the human host
by mosquitoes initially migrate to the liver.
These parasites (sporozoites) invade liver cells
and undergo asexual reproduction, releasing a
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large number of merozoites into the blood-
stream. There, each merozoite invades a red
blood cell and reproduces asexually. After
approximately 48 hr the erythrocyte ruptures
releasing daughter parasites that quickly invade
a fresh erythrocyte to renew the cycle. The
‘erythrocyte cycle’ maintains infection and di-
rectly generates disease symptoms.

An important characteristic of Plasmodium

falciparum, the most virulent malaria parasite, is
r 2002 Elsevier Science Ltd. All rights reserved.



Fig. 1. The mathematical model of the life cycle is
based on a finite number of compartments (here depicted as
circles), each representing an equal duration of develop-
ment time. In the above example, there are eight Compart-
ments and since the parasite life cycle is 48 hr, each
compartment represents 6 hr. Parasites can often be aged
on appearance. Four commonly used morphological stages
are young rings, late rings/young trophozoites, old tropho-
zoites and schizonts/segmenters. In this model, these are
each represented by two compartments (though more can
be used). In an infected individual, parasites in approxi-
mately the first half of the cycle (young rings–young
trophozoites) circulate freely and can be seen in the
peripheral blood, while all other parasites sequester in the
deep vasculature (old trophozoites–segmenters) and cannot
be detected.
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sequestration. At the half-way point of parasite
development, the infected erythrocyte leaves the
circulating blood and binds to endothelium in
the microvasculature where the cycle is com-
pleted. Daughter parasites released at erythro-
cyte rupture re-enter the circulation and invade a
fresh erythrocyte. A measurement of P. falci-
parum parasitaemia taken from a blood smear
therefore samples young parasites only. It is
difficult to relate this measure to the total
parasite density. In many cases a population of
parasites develops in synchrony. A low periph-
eral parasitaemia may reflect low or high total
parasite numbers depending on the level of
synchrony and the mean age of the parasite
population. Peripheral parasitaemia therefore
tends not always to be a good correlate of
clinical parameters.

It is difficult to form a reliable picture of the
response to antimalarial therapy without knowing
the behaviour of the sequestered parasite popula-
tion. Since antimalarial drugs are known to act
preferentially on different stages of parasite
development, it is conceivable that a drug that
quickly cleared parasites from the peripheral
blood might effect slower clearance of sequestered
parasites. This is of particular importance since
parasite sequestration is considered central to the
pathology of severe malaria. White et al. (1992)
showed that mathematical models can be used to
describe patterns of parasite sequestration. Grave-
nor et al. (1998) presented a simple method for
generating estimates of the level of sequestered
infection from observed peripheral parasitaemia
in children undergoing drug treatment. Here, we
describe a general approach to modelling the age
structure of P. falciparum that can be adapted to
suit the particular data set that is to be analysed.
We provide a test of the approach using in vitro
populations of parasites, apply the model to two
detailed clinical data sets and use the model
predictions to investigate the relationship between
patient temperature and total parasite density.

Materials and Methods

A GENERAL AGE-STRUCTURED MODEL OF

THE ERYTHROCYTE CYCLE

Figure 1 illustrates the intraerythrocytic life
cycle of P. falciparum, which lasts approximately
48 h. In our model, we divide the cycle into a
number of successive compartments. One of the
critical problems to be discussed later is how
to decide upon the number of parasite compart-
ments in the model, but a useful starting point is
the morphological appearance of the parasite
as shown in the figure. Immediately after the
erythrocyte invasion, the parasite has the
appearance of a ‘ring’, after about 12 hr it
gradually adopts a more solid appearance and
is known as a ‘young trophozoite’ (or late ring).
After 24 hr the trophozoite continues to grow
and finally it becomes a ‘schizont’ or ‘segmenter’
for the last 12 hr or so of the cycle, before
rupturing to release daughter parasites which
infect other erythrocytes. In the infected indivi-
dual in vivo, the parasite-infected erythrocytes
circulate freely in the bloodstream during the
first half of the life cycle, but at about 24 hr into
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the cycle the mature trophozoites sequester in
deep blood vessels and consequently disappear
from the peripheral blood. The model described
in this paper divides the 48 hr life cycle into a
finite number of compartments of equal dura-
tion. For example, Fig. 1 illustrates a model with
eight compartments, each of 6 hr duration, such
that compartments 1 and 2 roughly correspond
to young rings, compartments 3 and 4 to late
rings and early trophozoites, compartments 5
and 6 to mature trophozoites and compartments
7 and 8 to schizonts or segmenters. In the
following sections we consider how to choose the
number of compartments and other parameters
of the model.

This paper deals specifically with the issue of
parasite dynamics in patients receiving antima-
larial drug therapy. In these circumstances,
the population dynamics are dominated by high
parasite death rates that can reduce parasitaemia
by orders of magnitude within 48 hr, and
parasite clearance is approximately first order
(declines exponentially). These death rates are
determined by the drug in use, and vary
considerably with the age of the parasite. A
natural choice to describe the cycle is a Markov
chain, which has a number of transition com-
partments that represent parasite age, hence
a developing parasite passes through each
compartment in sequence at a specific rate. In
addition to these transition rates, the parameters
of the model are death rates at each compart-
ment (i.e. age dependent). This approach contrasts
with more complicated models that describe
parasite population dynamics during untreated
P. falciparum infections (Gravenor et al., 1995;
Gravenor & Kwiatkowski, 1998; Kwiatkowski &
Nowak, 1991; Molyneaux et al., 2001).

The model is used to simulate the behaviour
of a parasite population over time from the
starting point of any initial distribution of
parasites across the compartments of the model
(the age structure of the parasite population
at the onset of drug treatment). The rate
of change of the average numbers of para-
sites in each of the x compartments is as
follows:

dn1ðtÞ
dt

¼ RlnxðtÞ � ðlþ m1Þn1ðtÞ
and

dniðtÞ
dt

¼ lni�1ðtÞ � ðlþ miÞniðtÞ

for i ¼ 2;..., x.
The average duration of the cycle is 48 hr,

hence if the time period of transition between
each compartment is equal, l ¼ x=48 hr�1. R is
the number of daughter intracellular parasites
produced at the end of each cycle. Key
parameters of the model (to be estimated from
the data) are parasite death rates (mi), which are
age dependent and can differ between each
compartment. Sequestration can be defined to
occur at a particular point of the cycle (or over a
range of compartments); therefore, the age
structure of both the peripheral and sequestered
parasites can be described. In the models
considered here, sequestration occurs at the
half-way point.

The number of compartments x is chosen to
reflect the distribution of cycle lengths appro-
priate for P. falciparum and has an important
impact on the growth rate of the model (Saul,
1998, Gravenor & Lloyd, 1998), which can be
unrealistic if x is too small. It can be shown that
the distribution of cycle lengths in the x-
compartment model is described by a gamma
distribution, with mean 48 hr and standard
deviation 48=

ffiffiffi
x

p
(Lloyd, 2001a, b). At the

extremes, one compartment represents an ex-
ponential and highly variable distribution of
generation times, whilst for x-N; all parasites
complete their cycle in exactly 48 hr. The effect
of varying the number of compartments is most
marked at low values of x. The aim of this
approach is to allow some change in the level of
synchrony of the population due to small
differences in generation times. Discrete models
have been used for P. falciparum population
dynamics (White et al., 1992; Hoshen et al.,
2000; Molyneaux et al., 2001) in which no
variation in cycle length occurs (a situation that
can be modelled here as x-N).

The data available to fit the model are usually
sparse, allowing estimation of only a few
parameters. For a multicompartment model
certain parameter values must therefore
be assumed equal across several model
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compartments. Here we introduce the term
domain to describe several compartments that
have been grouped together, in the sense that
they are assigned identical parameter values. The
number of free parameters (parasite death rates)
is dictated by the particular data set, and for the
data analysed in this paper, the number of
domains should ideally be determined by the
developmental specificity of the drug in use.
Similarly, the initial age structure of the parasite
population cannot be estimated over all com-
partments, and must be estimated as a distribu-
tion over domains (that may differ from those
defined for drug specificity).

Note that if the initial parasite age structure is
estimated for y domains, assuming a distribution
(e.g. uniform) over the compartments within
each domain, this is not equivalent to reducing
the Markov chain to y compartments. There is a
distinction between the number of compart-
ments in the underlying model, which is deter-
mined on mathematical grounds, and the
number of domains the compartments are
grouped into. The number of compartments x

largely determines the model behaviour: it
should reflect the true variation in parasite
generation time. A domain is a group of
compartments that share identical parameter
values. How these mathematical compartments
are grouped into domains is a practical con-
straint. There is a trade-off between fine tuning
of the model (where the ideal solution may be to
have many domains, each corresponding to a
very specific stage of the life cycle) and the
problem of parameter estimation from sparse
data (which may be intractable if the number of
domains is large).

PARAMETER ESTIMATION

Parameters can be estimated from observa-
tions on changes in the number of parasites in
each developmental stage over time. Clinical
data describe only the total peripheral parasi-
taemia, hence the sum of the model population
in those compartments representing peripheral
parasitaemia (the first half of the compartments)
was fitted to the data. Parameters and initial
conditions were estimated with an algorithm that
minimizes the least-squares difference between
the model and data [NAG routine E04JAF
(1992), Numerical Algorithms Group Ltd.,
Oxford, U.K.]).

If possible all free parameters and initial
conditions are estimated from each patient. This
approach takes into account different responses
to therapy and in particular the initial distribu-
tion of parasites, which will vary considerably.
When data are scarce, the algorithm may fail to
find a unique solution for the parameter set. A
non-unique fit is obtained when the sum of
squares for the fit to the data has more than one
local minimum [the exact criteria are specified by
NAG routine E04JAF (1992), Numerical Algo-
rithms Group Ltd., Oxford, U.K.]. This means
the data can be equally well described by
different sets of parameters. If this occurs, we
suggest that an alternative approach is to
estimate parasite death rates as averages over a
group of patients, whilst estimating an initial age
structure unique to each patient (Gravenor et al.,
1998). For this procedure, bootstrap estimates of
mean parasite death rates are obtained. A large
number of mean parasite clearance profiles are
sampled at random from the full data set (by
sampling individuals with replacement), and the
model is fitted to each mean profile in turn.
From the set of best-fitting parameter values we
obtain an estimate of the mean value for the
parasite death rates, with associated confidence
interval (not dependent on an assumed normal
distribution for the data). Then, to estimate
sequestered dynamics for each patient, the mean
parasite death rates are included in the model as
constants (or ranges), leaving only a unique
initial parasite age structure to be estimated for
each individual patient. This method can only be
used if the same drug regime is used for each
patient, and is best applied if parasitaemia is
sampled at the same time intervals for each
patient (such structured data ensure a mean
profile reflects an individual profile).

TEST OF MODEL USING IN VITRO DATA

In vivo, the goodness of fit of the model can
only be assessed by how well it reproduces the
clearance of peripheral parasites. There is no
direct way of evaluating the model predictions
of sequestered dynamics in a clinical data set.
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Fig. 2. Clinical data. (a) Detailed irregular sampling.
Three examples of individual parasite clearance curves from
Kenyan trial of quinine in 69 patients. (b) Structured
sampling. Parasite clearance curve averaged (7S.E.) over
26 patients from Gabon. Parasitaemia sampled every 6 hr.
Parasitaemia expressed as % of initial peripheral parasite
density, hours are post-onset of treatment.
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However, since parasites of all ages can be
observed in culture, we used in vitro data for an
assessment of the model performance.

Population changes in ten cultures of
P. falciparum (Trager & Jensen, 1976) were
monitored with thin blood smears. The cultures
were initialized at low density (o1% erythro-
cytes infected) to minimize density-dependent
effects and maintain a first-order process. Each
culture was studied over the exponential growth
phase lasting 72 – 96 hr. The number of parasites
in each of five developmental stages was counted
every 12 hr. These categories were identified by
morphology and corresponded to young rings
(0 – 12 hr), old rings (12 – 19 hr), young tropho-
zoites (19 – 27 hr), old trophozoites (27 – 41 hr)
and segmenters (41 – 48 hr).

The model was fitted to the time series of
young parasites only (young and old ring
categories combined), mimicking the process of
fitting the model to clinical parasitaemia. The fit
was then used to predict the behaviour of the
older parasites. Unlike clinical situations, we
were able to compare model predictions of older
parasite dynamics to the data. Note that the
model was fitted to parasite growth rather than
clearance curves. However, the processes of
changes in age structure are the same assuming
both are first order. In addition, at low density
the parasite death rates were very low, which
reduced the crucial values to be estimated to R

and an initial age structure.

CLINICAL DATA

The model was applied to two sets of clinical
data. First, a study of quinine therapy in Kenyan
children, where 69 children were monitored for
parasitaemia until a clear blood film was found.
Over the first 48 hr on average ten samples per
patient were taken, providing a detailed set of
data at a sampling frequency that is far in excess
of standard clinical practice. Since sampling was
carried out at irregular intervals, different for
each patient, we refer to this set as ‘detailed
irregular sampling’. Three example clearance
curves are given in Fig. 2(a). Due to irregular
sampling, the mean clearance profile does not
provide a good indication of an individual
clearance curve.
The second data set comprised the first 26
children of a larger study from Gabon (Lell et al.,
2001). Each patient received quinine therapy
and parasitaemia was recorded at the onset of
treatment and then every 6 hr until no parasites
were detected in the blood. We refer to these
data as ‘structured sampling’. The mean clear-
ance profile is given in Fig. 2(b). Temperature
recordings were taken at hourly intervals.

Results

NUMBER OF MODEL COMPARTMENTS AND DOMAINS

Figure 3 compares the behaviour of models
with different numbers of compartments. The
simulations show the number of parasites
‘sequestered’ (those in the second half of
development) if all parasites are initially less
than 12 hr old. Using a model with a small
number of compartments (x ¼ 4) there is con-
siderable variation in parasite development
times, hence a proportion of parasites sequester
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Fig. 3. Effect of number of compartments included in
the model on time to sequestration: (a) 4-compartment
model, (b) 20-compartment model and (c) 48-compartment
model. Hundred parasites are introduced into the first
compartment of each model at t ¼ 0: Sequestration occurs
between the compartments at the midpoint of the cycle.
mi ¼ 0:
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very quickly, and the overall process of seques-
tration is gradual. As more compartments are
added to the model the time to sequestration is
less variable (x ¼ 20). In vitro data suggest that
binding of maturing P. falciparum to endothe-
lium occurs with a steep sigmoidal function
(Gardner et al., 1996). This was reproduced with
a 48-compartment model, each conveniently
representing 1 hr of development. The coefficient
of variation for the parasite generation times is
therefore 14%, and an initially synchronous
population will gradually become asynchronous
Fig. 4. Outline of specific model used for analysis of clinica
each an average duration of 1 hr. The parasites inhabit red bloo
of the cycle (white circles), then sequester in the microvasculatu
model apply across domains of parasite compartments. Parasit
the first and last compartments of the cycle (A and D) and m2

initial population age structure are made for four different do
population structure within these compartments is assumed u
over several cycles in the absence of external
influences.

The maximum number of parameter domains
to group the model compartments was found by
trial and error. The number was chosen such
that a unique fit for the model to the data was
obtained. For the clinical data, it appeared that
two distinct death rates could be estimated,
alongside four values for the initial age distribu-
tion. Quinine was used in both studies. Since
young and mature parasites are relatively
quinine resistant compared to the middle part
of the cycle (Geary et al., 1989), we assigned
m1 to the first and last 12 hr and m2 to the
intermediate compartments of the model. The
initial age distribution was estimated over four
domains: 0 – 12, 12 – 24, 24 – 36 and 36 – 48 hr. In
each model we used a value of R between 10 and
12 as a fixed parameter (Gravenor et al., 1995).
To explore the effect of modifying some of these
assumptions on the model performance we
considered three further models: m2 applying to
24 – 48, 8 – 40 and 4 – 44 hr. A schematic of the
structure of the specific model used for analysing
the clinical data is given in Fig. 4.

For the in vitro data since all death rates
were very low, it was possible to estimate five
values for the initial age distribution in addition
to R: The five initial age domains covered
compartments: 0 – 12, 12 – 19, 19 – 27, 27 – 41,
41 – 48.
l data. The underlying Markov chain has 48 compartments,
d cells and circulate in the peripheral blood for the first 24 hr
re for the second 24 hr (shaded circles). The parameters of the
e death rates are estimated in two domains: m1 for parasites in
for the intermediate compartments (B and C). Estimates of
mains (A–D) each comprising 12 compartments. The initial
niform. l ¼ 1 hr�1, R ¼ 10212:
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PERFORMANCE OF MODEL USING IN VITRO

POPULATIONS

Examples of the in vitro test of the model
are provided in Fig. 5. In the ten populations,
the fit of the model to the younger (‘peripheral’)
parasite sub-population generated an ave-
rage r2 (% variation in the data explained by
the model) of over 80%. When compared to
the data, the corresponding r2 for the predictions
of the older (‘sequestered’) sub-population
was 72%. Figure 5(a) shows that a good fit to
the peripheral population (r2 ¼ 95%) yielded
a good fit to the sequestered population
(r2 ¼ 90%). The fit was not always so good,
for example in Fig. 5(b), the sequestered density
tended to be overestimated (r2 ¼ 69%) despite
an excellent fit to the peripheral data
(r2 ¼ 99%). Figure 5(c) gives a clue to where
the model may be less accurate. This particular
culture had a highly synchronized population.
Since in this case the initial conditions of
the model are averaged over fairly wide
age groups (five domains), the model struggled
to fit the peripheral data (r2 ¼ 60%). Interest-
ingly, r2 for the sequestered population remained
high (86%).
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Fig. 5. Examples of model performance using in vitro popu
were used to predict changes in the population of parasites a
Predictions of ‘sequestered’ population is given by dotted line.
CLINICAL DATA SET 1

With these data we estimated all model
parameters on an individual patient basis. At
first glance, the model appeared to provide an
excellent description of the parasite population
dynamics. Figure 6 shows two examples of the
model fit and predicted sequestered parasite
density. Over all 69 patients, the variation in
the data explained by the model was on average
91%. Following the in vitro results, the goodness
of fit suggested that the model would provide
useful descriptions of the sequestered popula-
tion. However, although the algorithm found a
combination of parameters that gave a close fit
to the data, this combination was not unique and
different combinations of widely ranging para-
meters could be found which fitted equally well.
A unique fit to the data could not be found
in over 30% of cases. This means that the con-
fidence ranges for parameter estimates were far
too wide to be of use in predicting sequestered
numbers.

The presence of multiple solutions for the
model fit was expected after examining the
relative values of m1 and m2 between individuals.
From pharmacological studies it is known that
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lations. Data on parasites aged 0 – 19 hr combined (circles)
ged 19 – 48 hr (crosses). Fit of model is given by solid line.
Goodness-of-fit statistics is given in text.
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Fig. 6. Fit of the model to clinical data set 1. Clinical
data given by circles, solid line denotes fit of model to
clinical data, dotted line predicted sequestered parasites.
Parasite density plotted as a % of peripheral parasitaemia
at t ¼ 0: (a) r2 for peripheral parasitaemia=96%, esti-
mated parameters: m1 ¼ 0:0; m2 ¼ 0:54; R ¼ 12; estimated
initial age structure (0 – 12, 12 – 24, 24 – 36, 36 – 48 hr): 100,
0, 172, 2. (b) r2 ¼ 98%, parameters: m1 ¼ 0:17; m2 ¼ 0:43;
R ¼ 12; estimated initial age structure: 100, 0, 20 745, 584.
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Fig. 7. Multiple solutions for fit to data set 1. Clinical
data as in Fig. 6(a) (circles), solid line denotes fit of model
to clinical data, dotted line denotes predicted sequestered
parasites. Parasite density plotted as a % of peripheral
parasitaemia at t ¼ 0: Parameters obtained by initializing
estimation algorithm with differing starting values. (a) r2

(fit to peripheral parasitaemia)=97%, parameters: m1 ¼
0:4; m2 ¼ 0:02; R ¼ 12; estimated initial age structure (0 –
12, 12 – 24, 24 – 36, 36 – 48 hr): 100, 0, 312, 3. (b) r2 ¼ 99%,
parameters: m1 ¼ 0:0; m2 ¼ 0:37; R ¼ 12; estimated initial
age structure: 100, 0, 76, 3.
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m1om2 (reflecting the relative resistance of
ring and schizont compared to the mid cycle).
Furthermore, since the patients received the
same drug regime, values for each death rate
should not vary greatly between individuals.
Contrary to these expectations, the mean value
of m1 (2.63) was greater than m2 (1.36) and
between patient standard deviations consider-
ably exceeded the means (12.71 and 5.81,
respectively).

To illustrate the problem of multiple solutions
we considered the data in Fig. 6(a) and found a
different set of parameters (by initializing the
estimation algorithm at a different starting
point) that gave similar fits to the data, but
predicted very different sequestered population
dynamics. The first estimates suggest, as ex-
pected, that mid-cycle parasites are relatively
much more sensitive to the drug (m1 ¼ 0;
m2 ¼ 0:54) and at onset of treatment there are
two broods of parasites in the ratio 1 peripheral
to 1.7 sequestered. Predicted sequestered
dynamics show a simple exponential decline
[Fig. 6(a)]. However, the data can equally be
described [Fig. 7(a)] with parameters reflecting
greater sensitivity of ring compartments
(m1 ¼ 0:4; m2 ¼ 0:02) and an initial ratio of 1
peripheral to over 3 sequestered parasites. The
corresponding sequestered dynamics differ sig-
nificantly, having a slower decline from the
initially large sequestered mass. It is possible in
such cases to impose a constraint on the fit based
on the pharmacological information such that m1

must be less than m2: However, Fig. 7(b) shows
that the same data could also be well described
by simultaneously reducing the death rates and
the initial sequestered mass. This led to an
estimate of sequestered parasitaemia 50% of
that in Fig. 6(a).

Similar problems were also encountered when
comparing the predictions from models with
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Fig. 8. Fit of the model to data set 2. Clinical data
given by circles, solid line denotes fit of model to clinical
data, dotted line denotes predicted sequestered parasites.
Parasite density plotted as a % of peripheral parasitaemia
at t ¼ 0: (a) r2 ¼ 99%, parameters: m1 ¼ 0:035; m2 ¼ 0:59;
R ¼ 12; estimated initial age structure (0 – 12, 12 – 24, 24 –
36, 36 – 48 hr): 57, 43, 0, 12. (b) r2 ¼ 97%, parameters: m1 ¼
0:035; m2 ¼ 0:59; R ¼ 12; estimated initial age structure:
100, 0, 100, 12.
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differing domains for m1 and m2 (m2 applying to
8 – 40, 4 – 44 or 24 – 48 hr). Since these data could
be described with different parameter sets or
different models, that generated very different
predictions of sequestered dynamics, the esti-
mates of total parasite density were unreliable.

CLINICAL DATA SET 2

On an individual basis, these data were not
collected as frequently as data set 1, hence
multiple solutions were also present when all
parameters were estimated on an individual
basis. However, parasite density was always
recorded at equal time intervals, and each
patient received exactly the same drug regime.
This allows good estimates of the average
response to therapy to be calculated, and mean
values of mi to be obtained over all patients.
From the average clearance curve [Fig. 2(b)],
bootstrap estimates of parasite death rates
were [mean (hr�1)7S.E.] m1 ¼ 0:03570:08; m2 ¼
0:5970:3: The parasite death rates for each
patient were then fixed at the means to allow
estimation of unique starting age distributions.
Note that the fit of the model to the average
clearance curve generated a unique solution for
m1 and m2; and that unique solutions for the
initial age-distribution in each patient were then
obtained.

An example of the model fit is given in
Fig. 8(a). Here, the full parasite population was
largely confined to the peripheral blood at the
onset of treatment. Peripheral parasitaemia
remained high for the first few hours due to
bursting of a small number of schizonts im-
mediately after treatment. The delay in clearance
of sequestered parasites was due to the large
number of parasites in the 12 – 24 age compart-
ment, a proportion of which were able to
sequester before being killed off by the drug
treatment. Figure 8(b) illustrates a case with
similar numbers of peripheral and sequestered
parasites at the onset of treatment. A rise in
peripheral parasitaemia followed bursting of
small numbers of late compartment parasites.
A smooth decrease in sequestered density
occurred since initially there were no parasites
estimated in the 12 – 24 age domain and
the majority of sequestered parasites were aged
24 – 36 hr. Over all patients, the observed aver-
age parasitaemia at the onset of treatment was
94 000 ml�1 (79300). The estimated average
number of sequestered parasites (relative to 1ml
blood) was 53 000 (712 000).

Exploring other model structures, we found
that the two models which assumed m2 to act
over the domains 8 – 40 or 4 – 44 hr tended to
give slightly higher estimates of sequestered load,
but the predictions for individual patients were
highly correlated. The model with less realistic
death rate domains (m2 acting over the period
24 – 48 hr) was rejected. When fitting this model
to the averaged or individual data, multiple
solutions were present for the parameters and
significantly less variation in observed parasitae-
mia was accounted for.

RELATIONSHIP BETWEEN SEQUESTERED PARASITE

DENSITY AND TEMPERATURE

Using the results from data set 2 we investi-
gated the relationship between parasite load and
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Fig. 9. Relationship between temperature and parasite population dynamics. (a) Temperature at the onset of treatment
vs. observed initial parasitaemia [specifically, loge (parasites +1)]. r2 ¼0.12, p ¼0.1. (b) Temperature vs. estimated initial
sequestered parasite density. r2 ¼ 0:54; po0.001, best fitting regression line 36.2+0.29x. (c) Change in temperature (Dt)
over first 6 hr of treatment vs. initial sequestered parasite density. r2 ¼ 0:73; po0.001, best fitting regression line 1.75+0.27x
� 0.05x2: If the very low numbers of sequestered estimates are removed, the highly significant relationships remain: (b)
31.82+0.71x; (c) 7.42 – 0.82x.
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temperature. There was no observed relationship
between temperature and peripheral parasitae-
mia over the first 6 hr of treatment [Fig. 9(a)].
Sequestered (and total) parasite load on admis-
sion was significantly correlated with initial
temperature (po0.001) [Fig. 9(b)]. Sequestered
load was also significantly related to the change
in temperature over the first 6 hr of treatment
[po0.001, controlling for initial temperature,
Fig. 9(c)]. Note that only the slopes of the fitted
equations (not the significance of the relation-
ships) were dependent on the very low seques-
tered density estimated in three patients.

Discussion

A reliable clinical method of estimating the
total parasite load for P. falciparum infections
is unavailable. Possible methods could involve
finding good correlates with non-sequestering
by-products of infection, or substances that
respond in a predictable way to overall parasite
load. Our approach is based on developing
mathematical models that capture the essential
parasite population dynamics during drug
therapy, and estimating their parameters from
clinical data.

A general framework for modelling the para-
site population is suggested, and in practice the
complexity of the model was determined by the
amount of data available. Even though data
sampling was relatively frequent, there was
insufficient data to fit a detailed model. Initial
age structure was estimated as a distribution
over four 12-hr domains of the life cycle, and
only two distinct death rates were permitted.
When choosing the exact point for the para-
meters to act, prior information may be available
or it may be possible to differentiate between
models on the basis of model fit. Based on
pharmacological studies of quinine, models were
preferred with parasite death rates being highest
during the middle part of the parasite cycle.
Hence the model with m1 acting at 0 – 24 hr and
m2 at 24 – 48 hr did not fit well, due to the
grouping together of parasites that have very
different death rates. Models with more subtle
differences may be indistinguishable and it may
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be important to draw conclusions on sequestered
estimates based on a range of models.

In vitro cultures were used to show that the
model adequately described parasite population
dynamics, and the fit to the peripheral popula-
tion generated accurate estimates of changes in
the density of those parasites that would have
been sequestered in clinical infections. Given this
performance, the application of the model to
clinical data set 1 was disappointing. Even
though the model fitted the peripheral parasi-
taemia, a range of parameter solutions existed
for the same data. The range of predictions for
sequestered dynamics was then too wide to be
useful. This highlights the danger of relying
solely on the fit to peripheral parasitaemia when
making predictions about the sequestered popu-
lation. The contrast with the in vitro data is
largely due to the number of estimated para-
meters. Parasite death rates in culture at all ages
were low, and the dynamics were largely
determined by the initial age structure only. In
a clinical setting, parasite death rates are very
high and vary substantially with parasite age.
The extra parameters led to the problem of
multiple solutions for the model fit in the clinical
setting, but were essential for a reasonable
description of the underlying biological process.

The structure of clinical data set 2 offered an
opportunity to use the same model, even though
blood samples were taken less frequently. The
additional assumption was that parasite death
rates did not vary considerably between patients,
and could be fixed at the values estimated from
the average clearance curve. As expected the
mean estimate of m2 was much higher than m1;
reflecting the stage specificity of quinine. With
the extra degrees of freedom for the fit to
individual clearance curves, unique solutions
were obtained for the initial age structure in 26
patients. Initial sequestered parasite density in
these patients was on average 50% that of
peripheral parasitaemia, but varied considerably
(range 0 – 166%) between patients. Although
initial sequestered density was slightly more
variable than peripheral parasitaemia, following
treatment sequestered densities were much more
uniform between patients. This may be due to a
dampening effect of the drug, and the cyclical
nature of parasite development: one peripheral
parasite leads to one sequestered parasite, but
one sequestered parasite can generate up to
many peripheral parasites. Sequestered popula-
tion dynamics may be inherently less variable
[e.g. Fig. 3(c)], which aids the estimation process.

Applying the model estimates to other clinical
measures, we found that sequestered parasite
density was related to initial temperature, and
the changes in temperature over the first 6 hr of
treatment. Interpreting the relationships at t ¼ 0
is difficult since it is a static observation and
changes in parasite number and age structure are
the likely cause of fever. The model cannot be
used to extrapolate backwards before treatment
since parasite death rates would be unknown
and very different at this time. Fever is triggered
(with a time delay) by the bursting of schizonts,
and tends to occur at a threshold parasite density
(Kwiatkowski, 1995) (although in addition,
malarial fever shows a clear circadian rhythm,
Lell et al., 2000). We might therefore expect high
temperature on admission to reflect high parasite
density and a high ratio of peripheral to
sequestered parasites. Here, high fever was best
predicted by a high sequestered mass combined
with a high proportion of parasites aged
24 – 36 hr. This suggests schizont rupture oc-
curred at a considerable time before treatment
began in those patients with fever at t ¼ 0:
Changes in temperature over the first 6 hr (Dt)
must be constrained to some extent by initial
temperature. Controlling for this variable we
found sequestered load remained negatively
correlated with Dt: An increase in Dt was best
predicted by low initial sequestered load and a
high initial proportion of parasites aged 12 –
24 hr. This suggests that the time from schizont
rupture to a peak temperature is up to 12 hr.
However, the initial age structure may not be
modelled in enough detail at present to accu-
rately determine this relationship.

There are a number of simple means by which
additional complexity, or different assumptions
can be incorporated into this model framework.
Parameters can be made time dependent (e.g.
death rates decreasing exponentially after each
dose) to reflect drug and treatment regime (such
as mefloquine which is applied infrequently and
has a long half-life). For the above data, drug
treatments are given at frequent intervals and we
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considered the additional difficulty in estimating
parameters for such a model to outweigh the
benefits of additional complexity. The use of a
time delay before the drug begins to act may
be appropriate. Dead parasites are likely to be
involved in pathology. If an additional para-
meter is introduced (the rate of decay of dead
sequestered parasites) the model can describe the
clearance of the full sequestered mass and can be
compared with histopathology data. Different
approaches can be taken to estimate initial
age structure. If we could assume one brood of
parasites, the degree of synchrony could be
described by a uniform distribution over y
compartments (small y being highly synchro-
nous). We then need only to estimate two values
for the initial age distribution, the total parasite
density and y. Different distributions may be
more appropriate (particularly due to the high
reproductive potential of the population) which
would require further parameters. Similarly, if
two broods were present more parameters would
be introduced. If the age of peripheral parasites
can be estimated (by morphology) this addi-
tional information can be exploited to improve
predictions.

In vitro tests suggest that our model is an
appropriate tool for assessing sequestered popu-
lation density. However, experience with the
clinical data showed that parameters for even a
simple model cannot be estimated with con-
fidence unless large amounts of data are avail-
able. Data collected over equal time intervals are
more useful, and a sampling frequency of at least
4 hr will be needed to add more detail to the
model analysed here. The method for revealing
sequestered population dynamics is at an early
stage, and predictions of clinical relationships
should be treated with caution. However,
analysis of detailed time series with this model
framework offers the opportunity to explore
relationships between clinical variables, the
parasite population and the pathogenesis of
malaria.
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