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Abstract. Multi-patch systems, in which several species interact in patches connected by
dispersal, offer a general framework for the description and analysis of spatial ecological
systems. This paper describes how to analyse the local stability of spatially homogeneous
solutions in such systems. The spatial arrangement of the patches and their coupling is
described by a matrix. For a local stability analysis of spatially homogeneous solutions it
turns out to be sufficient to know the eigenvalues of this matrix. This is shown for both
continuous and discrete time systems. A bookkeeping scheme is presented that facilitates
stability analyses by reducing the analysis of a k-species, n-patch system to that of n uncou-
pled k-dimensional single-patch systems. This is demonstrated in a worked example for a
chain of patches. In two applications the method is then used to analyse the stability of the
equilibrium of a predator–prey system with a pool of dispersers and of the periodic solutions
of the spatial Lotka–Volterra model.

1. Introduction

In most natural populations individuals are not evenly distributed across space.
Consequently, the rôle played by spatial heterogeneity in both the dynamics and
the persistence of populations has been a question of considerable interest to math-
ematical ecologists. Spatial structure can be explicitly incorporated into mathe-
matical models in one of two ways, either as a continuous variable (as in reaction
diffusion models) or as a discrete variable. In the latter case, a single population is
considered as being made up of a collection of smaller subpopulations (‘patches’)
between which individuals migrate. Such models have attracted considerable atten-
tion in recent years, partly because they are often more amenable to mathematical
analysis and partly since their simulation is straightforward.
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A key question addressed by such investigations is the effect of dispersal on
the stability of population dynamics. Because the absence of a stable homogeneous
solution is a sufficient condition for the existence of a spatial pattern, stability anal-
ysis of spatially homogeneous solutions is a natural first step in analysing spatial
systems. In this paper we describe a method for local stability analysis of spatially
homogeneous solutions of multi-patch systems. In essence, the method involves
finding the eigenvalues of the matrix that describes the spatial arrangement of the
patches, and then reducing the multi-patch system to a collection of single–patch
systems. This simplification of the local dynamics makes the model tractable so
that standard techniques can be applied more easily. For instance, a bifurcation
analysis of a low dimensional system can give information about the spatial pattern
that develops when the homogeneous solution becomes unstable. These methods
have the obvious advantage over simulations that they lead to more general results
and hence to clearer insights.

Local stability analysis in multi-patch systems is a (spatially) discrete analogue
of local stability analysis in reaction diffusion (Turing, 1952; Segel and Jackson,
1972; Murray 1989) and reaction dispersion (Kot, 1989; Neubert et al., 1995) sys-
tems. The discrete form covers cases where the geometry of the spatial domain
cannot be described with a continuous spatial variable. This is of particular interest
for ecological problems for which the effect of the spatial arrangement of the local
populations on the stability of the global population is studied.

The analysis uses a novel method to keep track of all the nk population densities
(k species in each of n patches) by arranging them as a k by nmatrix. This avoids the
need for the complex book-keeping which arises if the densities are kept as a vector
of length kn. For instance, we do not need to employ the Kronecker product con-
structs which play a crucial rôle in the elegant study of continuous time multi-patch
models by Othmer and Scriven (1971). Our analysis also provides a generalisation
to the stability analysis of non-equilibrium homogeneous solutions. This general-
isation can be used, for instance, to study the stability of spatially homogeneous
limit cycles and can thus shed light on the biologically important issue of the syn-
chronicity observed between populations, whose abundances undergo oscillatory
behaviour, in different geographical regions (Lloyd and May, 1999; Jansen, 1999).
Furthermore, we show that the same method can be applied to discrete time systems,
and we thus generalise and extend results discussed by Rohani et al. (1996).

One of the main aims of this paper is to generalise previous analyses of the
linear stability of spatially homogeneous solutions, and, by extension, of dispers-
al-driven instabilities (Turing, 1952; Segel and Jackson, 1972; Levin, 1974; Allen,
1975; Kot, 1989; Murray, 1989; Neubert et al., 1995; Rohani et al., 1996). It is
unfortunate that the four cases of continuous or discrete time and continuous or
discrete space have tended to be treated as four separate cases in the literature (Tu-
ring, 1952, is one notable exception in that both continuous and discrete spatial
models are considered). The analyses in each of the four situations are, not surpris-
ingly, very similar indeed, as are the conclusions drawn from them (although there
are important differences between continuous and discrete time models regarding
the bifurcations by which spatially homogeneous equilibrium solutions lose stabil-
ity and the conditions which lead to such bifurcations; Kot, 1989; Neubert et al.,
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1995). Considerable duplication of work has occurred as a consquence of this sep-
aration of cases, most notably in a number of recent papers concerning stability and
dispersal-driven instability in discrete-time metapopulation models (Rohani et al.,
1996; Rohani and Ruxton, 1999a,b).

In the next section we shall present the main result of this paper, for both contin-
uous time and for discrete time systems, followed by the proofs of the results. Next
we apply our result, firstly to analyse the stability of the equilibrium of a spatial
predator–prey system, and secondly to analyse the stability of periodic solutions of
a spatial predator–prey system. Finally, the applicability of the results and possible
generalisations are discussed.

2. Main result

2.1. Continuous time

Consider a spatial system of n patches in which k species interact. It is assumed
that, from the perspective of the species, all patches are identical environments
and therefore that, in the absence of migration, the local dynamics in each patch is
defined by 


ẋ1,j
...

ẋk,j


 =




f1(xj )
...

fk(xj )




where the dot means differentiation with respect to time and xj is the vector which
holds the densities of all species in patch j : xj = (x1,j , . . . , xk,j )

T . In vector
notation this can be expressed as

ẋj = f (xj ) (1)

where f : �k → �k is a vector function. Its Jacobian is denoted as

Df (xj ) =




∂f1
∂x1,j

. . .
∂f1
∂xk,j

...
. . .

...
∂fk
∂x1,j

. . .
∂fk
∂xk,j


 .

The patches are coupled through dispersal. The population dynamics of the
spatial system is completely defined by the combination of local dynamics and
dispersal

ẋj = f (xj ) +
n∑

i=1

cij M xi (2)

where the k × k matrix M is diagonal, with elements mh, and describes how mi-
gration differs between species. C is an n × n matrix C = {cij } which describes
the spatial structure of the system and is the same for all species. The density of
species h in patch j changes through migration from patch i to j at rate mhcij . Thus
cii < 0, as diagonal elements of C represent individuals leaving a given patch, and
cij ≥ 0 for all i 
= j , as off-diagonal elements of C represent individuals arriving at
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a given patch from another. (Note that we adopt the notation of the probabilistically
oriented literature: cij describes the movement from i to j .)

In many biologically interesting situations, dispersal is a non-directional pro-
cess, i.e. the (per-capita) rate of migration from patch i to patch j equals the rate of
migration in the opposite direction. As an example, dispersal between two patches
may depend only on the distance between them. In such situations, the matrix C is
symmetric, but, although this has some implications which we shall discuss later,
we emphasize that we do not require C to be symmetric.

Throughout this paper we shall assume that migration conserves the numbers
of individuals and that all patches have equal sizes. Consequently, the number of
migrants leaving a particular patch must equal the sum of these migrants arriving
at other patches. We thus have

∑n
j=1 cij = 0 for all i, implying that C has a zero

eigenvalue corresponding to the right eigenvector (1, . . . , 1)T . Using the additional
properties of C mentioned above, it follows from Gershgorin’s first theorem (see,
for instance, Marcus and Minc, 1964) that all non-zero eigenvalues of C have neg-
ative real part. (Note that when patches are of different sizes, the rows of C need
not sum up to zero. Since the model involves densities, as opposed to numbers,
migration from patch i to patch j can cause a decrease in density in patch i that
does not match the increase in density in patch j . The numbers of migrants leaving
a particular patch and arriving at other patches from that particular patch should still
match. Therefore

∑n
j=1 w1j cij = 0, where w1j is the size of the j th patch, obvi-

ously w1 = (w11, . . . , w1n)
T is a right eigenvector w1 of C with eigenvalue 0. The

analysis of systems with different patch sizes is otherwise completely analogous to
the case of equal patch sizes.)

We shall analyse the local stability of spatially homogeneous solutions, defined
as follows.

Definition. A solution is spatially homogeneous or flat when the densities in all
patches are identical, i.e. when xj (t) = s(t) for all t and for all j = 1, . . . , n, with
s taking values in �k .

Not all matrices C allow for flat solutions. Flat solutions remain flat if the
number of migrants leaving a patch matches the number of arriving migrants: the
migration terms cancel. This will be the case if

∑n
i=1 cij = 0 for all j , in other

words, if the matrix C has a left eigenvector (1, . . . , 1) associated with eigenvalue
0, we shall assume that this is the case throughout this paper. (This will clearly be
the case if C is symmetric.) If the migration terms cancel for a flat solution, then a
solution which is flat at one point in time will stay flat forever and the k dimensional
subset of the state space in which flat solutions take their values is invariant. We
denote such flat solutions by Sflat(t) = (s(t), . . . , s(t)), where s(t) is a solution of
(1).

For large n, stability analysis of a n× k dimensional system is a daunting task.
The following result simplifies the problem by reducing it to a stability analysis of
n decoupled, k dimensional systems.

Theorem 1. Let M be a k×k matrix and C a n×n matrix with n linearly indepen-
dent eigenvectors, one of which is the left eigenvector (1, . . . , 1) with associated
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eigenvalue 0. Let f : �k → �k be a vector function which is at least once contin-
uously differentiable and let s(t) be a solution of (1) and Sflat(t) the corresponding
flat solution of (2).

The linearisation of the system (2) around Sflat(t) can be transformed by a
similarity transformation into n decoupled systems of the form

ẋ = (Df (s(t)) + λiM) x, i = 1, . . . , n (3)

where λi is an eigenvalue of C and x(t) ∈ �k .

The stability properties of Sflat(t) can now be derived from those of the n decoupled
systems. When s(t) = s̃ is a fixed point, the corresponding flat solution is locally
asymptotically stable if the matrices Df (s̃) + λiM do not have any eigenvalues
with non-negative real parts. When s(t) = s(t + T ), i.e., the solution is periodic
with period T , the flat solution is a linearly stable solution if all non-trivial Floquet
multipliers of (3) for all i lie inside the unit circle. In all other cases the stability
can, in theory, be assessed from the dominant Lyapunov exponents of (3).

We remark that C is guaranteed to have n linearly independent eigenvectors in
the biologically important case when C is symmetric. In this situation, the eigen-
values of C will be real (as are the corresponding eigenvectors), but will not be
necessarily distinct.

Because C has a zero eigenvalue, one of the systems (3) equals the linearisation
of (1) around s(t). Thus a spatially homogeneous solution can only be stable if s(t)
is a stable solution of (1); dispersal without loss therefore never stabilises a system
of which the non-spatial variant is unstable. When ẋ = Df (s(t)) x is unstable, it
can still be interesting to know the stability properties of the other linearised sub-
systems. If the Lyapunov exponents of the subsystems corresponding to non-zero
eigenvalues of C are negative, then the differences in density between patches will
decrease while the solution is in the neighbourhood of the homogeneous solution.
This is particularly relevant when s(t) is a chaotic solution of (1); the flat chaotic so-
lution attracts only if the Lyapunov exponents of all the subsystems corresponding
to non-zero eigenvalues of C are negative.

When the migration rates are identical for all species, the stability conditions
for the spatial system follow directly from (1). Then, all systems (3) can be trans-
formed to ψ̇ = Df (s(t)) ψ by substituting ψ(t) = exp(−λimt)x(t), where m

is the migration rate. A corollary is that a single species spatial system cannot be
destabilised by diffusion (Okubo, 1980).

Finally, we note that in the case of an equilibrium flat solution, (3) is of the
same form as the eigenvalue equation obtained in reaction diffusion systems (in
which both space and time are taken to be continuous) when the stability of a
wave-like spatial mode is considered (see, for instance, Murray, 1989). Notice that
the eigenvalue λ of the matrix C which appears in (3) replaces the quantity −k2,
where k is the spatial wavenumber–the eigenvalue of the spatial eigenfunction–in
the corresponding expression from the continuous spatial case.
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2.2. Discrete time

Discrete time systems with dispersal are often implemented in two steps. In the
first step the k species interact within their patch, and form the raw material for the
next generation. This interaction transformation is defined by


x1,j (t + 1)

...

xk,j (t + 1)


 =




f1(xj (t))
...

fk(xj (t))




or in vector notation
xj (t + 1) = f (xj (t)) (4)

Next the individuals disperse. Combination of the two steps yields

xj (t + 1) = f (xj (t)) +
n∑

i=1

cij M f (xi(t)) (5)

This completely defines the spatial system. When the patches are arranged in some
regular way, system (5) is called a coupled map lattice.

The interpretations of the matrices C and M differ from the previous case,
since they now describe a discrete, rather than continuous, dispersal process. cijmh

denotes the fraction of individuals of species h in patch i that migrates to patch
j , and 1 + ciimh the fraction of individuals of species h in patch i that does not
leave during the dispersal step. Despite the differences in interpretation, similar
assumptions are made concerning their structure: cii < 0 for all i, cij ≥ 0 for all
i 
= j , and

∑n
j=1 cij = 0 for all i. In addition, notice that, since a patch cannot

produce more migrants than the number of individuals present, ciimh ≥ −1.
The local stability of a flat solution can be established using the following result:

Theorem 2. Let M be a k×k matrix, C a n×n matrix with n linearly independent
eigenvectors, one of which is the left eigenvector (1, . . . , 1) associated with eigen-
value 0. Let f : �k → �k be a vector function which is at least once continuously
differentiable and let s(t) be a solution of (4) and Sflat(t) the corresponding flat
solution of (5).

The linearisation of the system (5) about Sflat(t) can be transformed by a simi-
larity transformation into the following set of equations

x(t + 1) = (I + λiM)Df (s(t)) x(t), (6)

where λi are the eigenvalues of C, I is the identity matrix and x(t) ∈ �k .

When s(t) = s̃ is a fixed point, the flat solution is stable when all eigenvalues
of the matrices (I + λiM)Df (s̃) lie inside the unit circle. As before, since C

has a zero eigenvalue, one of these matrices is precisely that which appears in the
stability criterion of the single-patch system. Dispersal cannot, therefore, stabilise
a system of which the non-spatial variant is unstable. When s(t + τ) = s(t), i.e.,
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when s(t) is periodic with period τ , the spatially homogeneous solution is linearly
stable when all eigenvalues of the matrix

(I + λiM)Df (s(τ )) (I + λiM)Df (s(τ − 1)) . . . (I + λiM)Df (s(1)) (7)

for all i lie inside the unit circle. In all other cases the stability is likewise deter-
mined by the dominant Lyapunov exponents of (6), but their calculation is often
cumbersome.

As in the continuous time case, equality of the migration rates (mh = m for
all h) leads to further simplifications. As the matrices I + λiM equal (1 + λim)I,
the eigenvalues of the matrix multiplying x(t) in (6) are simply those of the sin-
gle-patch Jacobian multiplied by 1 + λim (Lloyd, 1996). As a consequence of the
restrictions placed upon the entries of C, this factor has modulus less than or equal
to one. Again, dispersion cannot destabilise the spatially homogeneous equilibrium
(Lloyd, 1996; Rohani et al., 1996). Similarly, examining expression (7) shows that
the stability of a spatially homogeneous periodic orbit is related in an obvious way
to that of the corresponding single-patch periodic orbit.

The method presented here is particularly useful to construct the stability bound-
aries of complicated spatial systems from those of a simple spatial system. (Stability
boundaries are curves in parameter space for which the subsystems given by (3)
have at least one Lyapunov exponent of value zero (or, more simply in the case of an
equilibrium, have at least one eigenvalue with real part equal to zero) or for which
subsystems (6) have one or more multiplier with unit modulus.) As a simple spatial
system consider, for instance, a matrix C with eigenvalues 0 and −1, which arises
for certain two patch systems. Because a stability analysis for complicated spatial
systems requires analysis of subsystems which only differ in their value of λi , the
stability boundaries can be found by a scaling of all migration rates with −λ−1

i .
In this way results from small spatial systems can be extended to larger systems
which possibly have more complicated arrangements of patches.

As before, we notice that for an equilibrium flat solution, (6) is of the same form
as the eigenvalue equation that is obtained in reaction dispersal systems (in which
space is continuous, but time discrete) when the stability of a wave-like spatial
mode is considered (Kot, 1989; Neubert et al., 1995). Again, comparing the ex-
pressions obtained in the two cases, we see that the diagonal matrix I +λiM plays
an identical rôle to that of Kot’s matrix K , whose diagonal elements are spatial
Fourier transforms of the dispersal kernels for the different species.

3. Proofs

The main problem in a local stability analysis of a k × n dimensional problem is
to keep track of all densities in an ordered fashion. To this end the k × n matrix

X = (x1, . . . , xn) =




x1,1 . . . x1,n
...

. . .
...

xk,1 . . . xk,n




is introduced. The columns of this matrix contain the densities of the k species in a
particular patch, its rows the densities of a species in the n patches. The interaction
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in a patch therefore works on the columns, and transport between patches on the
rows. The local interaction is between different species in a patch and is given by
the function

F(X) = (f (x1), . . . , f (xn))

which works on the columns of X. Migration redistributes a species over the dif-
ferent patches, therefore migration works on the rows of X and can be expressed
as a postmultiplication of X (or F(X) for discrete time systems) by the matrix C.
Different species in a patch migrate with different rates, which can be accomplished
by a premultiplication of X (or F(X)) by M . The dispersal process can thus be
written as M XC (or M F(X)C).

Proof of Theorem 1. The dynamics of a continuous time spatial system (2) can be
expressed as

Ẋ = F(X) + M XC. (8)

To analyse the stability of the homogeneous solution we consider the time evolution
of a solution, X, which arises by making a small perturbation to the flat solution.
Then we have the following equation for the time evolution of the perturbation

Ẋ − Ṡflat = F(X) − F(Sflat) + M (X − Sflat) C. (9)

We can linearise about Sflat by writing X = Sflat + εY + h.o.t., where 0 < ε � 1
and h.o.t. indicates second and higher order terms in ε. The term F(X) can be
expanded in a Taylor series

F(X) = F(Sflat + εY + h.o.t.)

= F(Sflat) + εDf (s(t))Y + h.o.t.

Inserting this expression into (9) and comparing terms of first order in ε we obtain
the following equation for the time evolution of Y

Ẏ = Df (s(t)) Y + M Y C.

Since C has n linearly independent eigenvectors, it can be diagonalised by a sim-
ilarity transformation (this is a standard technique from linear algebra, see, for
example, Hirsch and Smale, 1974), that is to say, there exists an invertible matrix
A such that A−1 C A = # where # is a diagonal matrix. The diagonal elements
of the matrix # are the eigenvalues, λ of C, and the matrix A can be constructed
using the eigenvectors of C. In particular, we set A = (w1, . . . , wn) where wi is a
right eigenvector of C, i.e. Cwi = λiwi , and A−1 = (v1, . . . , vn)

T where vi is a
left eigenvector of C, i.e., viC = λivi . We shall choose v1 = (1, . . . , 1) as the left
eigenvector associated with λ1 = 0.

Using the linear transformation % = Y A, we transform the k by n matrix
Y to % = (ψ1, . . . , ψn). For a continuous time spatial system, linearised in the
neighbourhood of the spatially homogeneous solution Sflat, the derivative of %

with respect to time is

%̇ = Ẏ A = Df (s(t)) Y A + M Y C A

= Df (s(t))% + M % #
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Because# is diagonal the dynamics of the columns of% are decoupled andA trans-
forms the linearised version of (2) to a system of n decoupled subsystems given
by (3). The transformed variable % is expressed in a coordinate system where the
coordinate axes are invariant with respect to the linearised flow. ��

Proof of Theorem 2. For discrete time systems the same method can be applied.
First (5) is rewritten in matrix notation as

X′ = F(X) + M F(X)C (10)

where the shorthands X = X(t), X′ = X(t + 1) are used. As in the proof of
Theorem 1, we shall make a small perturbation about the flat solution, writing
X = Sflat + εY + h.o.t., and then linearise around Sflat

X′ − S′
flat = F(X) − F(Sflat) + M (F(X) − F(Sflat)) C. (11)

Expanding F(X) in a Taylor series about Sflat and collecting terms of order ε gives
the following equation for the time evolution of Y

Y ′ = Df (s(t)) Y + M Df (s(t)) Y C.

Again, we transform Y into % with the matrix A that diagonalises C. The trans-
formed variable % changes over time as

% ′ = Y ′ A = Df (s(t)) Y A + M Df (s(t)) Y C A

= Df (s(t))% + M Df (s(t))% #

which aren decoupled systems, each of which can be rewritten as (6) for appropriate
λi . ��

4. Examples and applications

In general there are no methods to determine the stability of a spatial system di-
rectly from the non-spatial system. However, the method described here can greatly
reduce the numerical effort because it allows the extrapolation of results from a col-
lection of uncoupled systems to more complex systems. We shall demonstrate this
for a simple spatial system and then apply it to two spatial predator–prey models.

4.1. Example: a chain of patches

Above we showed how local stability analysis of a spatially homogeneous solution
of a n-patch system can be reduced to an analysis of n uncoupled systems. We will
demonstrate this for a chain of equally spaced patches of identical size. In such a
chain every patch that is not at the end of the chain will lose half of its migrating
individuals to the left and the other half to the right. Patches on the end will lose
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only half their migrants because the other half will be reflected from the end of the
chain. In this case C takes the form



− 1
2

1
2 0 . . . . . . 0

1
2 −1 1

2
. . .

...

0 1
2 −1 1

2
. . .

...
. . .

. . .
...

. . . 0
...

. . . 1
2 −1 1

2

0 . . . . . . 0 1
2 − 1

2




(12)

The right eigenvectors are (Othmer and Scriven, 1971; May, 1974)

wi = 1

n

(
cos

(i − 1)π

2n
, cos

3(i − 1)π

2n
, . . . , cos

(2n − 1)(i − 1)π

2n

)T

with corresponding eigenvalues λi = −1 + cos (i−1)π
n

, where i = 1, . . . , n. Note
that for a stability analysis it is sufficient to know the eigenvalues; the eigenvectors
need not be known since it is not necessary to explicitly calculate the matrix A.

4.2. Application 1: a predator-prey system with a localised
predator disperser pool

In Weisser et al. (1997) a predator–prey system is studied in which the interaction
between predator and prey is localised in patches and in which individual predators
can migrate from patch to patch through a pool of dispersers. A pool of migrants sta-
bilises the neutrally stable equilibrium of the Lotka–Volterra predator–prey model
(Holt, 1985; Weisser and Hassell, 1996). When a Holling type II functional re-
sponse is added to the model, a single, global pool stabilises the equilibrium if the
destabilising influence is not too strong. Beyond a certain threshold the equilibrium
becomes unstable (Namba, 1983; Holt, 1985; Weisser et al., 1997).

The above result is based on a single global pool through which all migrants
disperse. A natural question is whether the stability domain expands or contracts
when spatial interactions are explicitly included in the model. To answer this ques-
tion, the global pool is subdivided into local pools. Migrants from each patch move
into a pool belonging to the local patch from which they can travel to other pools.
This results in the following local interaction:

f (xi) =


 rHi − HiPi

1+ThHi
HiPi

1+ThHi
− (d + e)Pi + ιQi

ePi − (ι + s)Qi




where xi = (Hi, Pi,Qi)
T . The variables Hi and Pi are the densities of, respec-

tively, prey and predators in patch i and Qi is the density of predator dispersers



242 V.A.A. Jansen, A.L. Lloyd

in the local pool belonging to patch i. Within a patch, the prey population grows
with rate r and predators die with rate d . Predators become dispersers with rate e

and dispersers move back from the local pool to the patch with rate ι. The death
rate in the patch is s and Th is the predator’s handling time for a prey item. For a
suitable choice of parameters the system has a positive equilibrium x∗, defined by
f (x∗) = 0.

Because only the migrants in the local pool can migrate to other local pools

M =

0 0 0

0 0 0
0 0 mQ




where mQ is the maximum rate with which migrants leave the local pool. We shall
assume that the patches are arranged in a chain. This defines the multi-patch system.

We now want to find out whether spatial interactions can possibly destabilise
the system. For this at least one of the equilibria of subsystems (3) should be unsta-
ble while the subsystem corresponding to λi = 0 is stable. In Weisser et al. (1997)
a two patch model is studied, with the following connectivity matrix

C =
[−1 1

1 −1

]
,

which has eigenvalues 0 and −2. It follows from the evaluation of the Routh-Hur-
witz conditions that the matrix (Df (x∗) − 2M) has at least one eigenvalue with
positive real part if and only if

(2mQ)2U + (2mQ)V + W > 0 (13)

where

U = ιe

ι + s
+ r(d + es

ι + s
)Th

V = U(ι + s − U) + r(d(ι + s) + es)Th

W = r(d + es

ι + s
)
[
(Th(ι + s + d + e) − 1)(ι + s − U)

+(ι + s − (d(ι + s) + es)Th)
]

Note that for mQ = 0 the model reduces to the single patch case (equivalent to the
subsystem with λi = 0) so that W < 0 is the stability condition for the single patch
model. As is shown in Fig. 1a, the two-patch model can indeed be unstable while
the single patch model is stable (Weisser et al., 1997). The spatial interactions can
thus destabilise the interaction.

Fig. 1a shows the region in parameter space in which a flat solution in a chain
of two patches is unstable. This can be constructed from the results in Weisser et al.
(1997) by realising that in their model the only non-zero eigenvalue of C is −2.
The stability condition for a chain of two patches can be found by replacing 2mQ

by mQ in condition (13).
The region is rather small. To see whether this region will expand or contract

with increasing chain length, an extra patch is linked to the chain. For a chain of
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Fig. 1. Stability of the equilibrium of a predator–prey system with a localised predator dis-
perser pool, depending on the predator handling time, Th and the predator migration rate,
mQ. In the dark shaded region the equilibrium in unstable in the non-spatial model, in the
lighter shaded region the equilibrium of the spatial model is unstable, while it is stable in
the non-spatial model. In the unshaded region the equilibrium is stable in the spatial and
non-spatial models: (a) for a chain of two patches, (b) for a chain of three patches, (c) for a
chain of patches of infinite length. Parameters: r = 1, e = 1, ι = s = 0.2 and d = 1.5.
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three patches the eigenvalues of C are 0, −1/2 and −3/2. In Fig. 1b the unstable
region in Fig. 1a is copied twice after a scaling with −λ−1

i . Clearly the region in
which the equilibrium is unstable becomes larger. For a given handling time, the
equilibrium of a longer chain is unstable for a larger range of migration rates. If
the two patch system is stable for all migration rates, all chains of longer length are
always stable.

The region of instability generally increases with increasing chain length. For
an infinitely long chain the homogeneous solution is unstable for all migration rates
above a lower boundary (Fig. 1c). Even for very large migration rates we do find
instability. The reason for this is that, for an infinitely long chain, the eigenvalues
of C can take values close to 0. Therefore even very large migration rates can be
scaled back to values for which the two patch model is unstable. The lower value
of the migration rate for which instability is found happens to be exactly half the
value of the lower stability boundary of a chain of two patches (this is because the
smallest eigenvalue of C goes to −2 as the number of patches goes to infinity).
A general conclusion is that the region of instability increases with the addition
of more patches to the chain. If the patches are not arranged in a chain but in a
different geometrical arrangement a similar result can be expected to hold.

4.3. Application 2: the spatial Lotka–Volterra system

The simplest and oldest model for the interaction between predator and prey is the
Lotka–Volterra model (Volterra, 1926). The model has a neutrally stable equilib-
rium, surrounded by neutrally stable closed orbits. The dynamics show periodic
oscillations with an amplitude which depends on the initial conditions; therefore,
there is no restriction on the possible amplitudes. The spatial counterpart of this
model is different in that the amplitude of the oscillations can be restricted by sta-
bility, even though no long lasting spatial patterns can develop, and all solutions in
the end converge to a spatially homogeneous solution (for the spatially continuous
case see Murray (1975), for the spatially discrete case see Appendix). Indeed, in
a two patch Lotka–Volterra model spatially homogeneous periodic solutions that
oscillate with a large amplitude can be diffusively unstable (Jansen, 1994, 1995;
Jansen and De Roos, 2000). This restricts the amplitude of the oscillations to those
spatially homogeneous solutions that are (neutrally) stable.

We shall demonstrate how the maximum possible amplitude of the oscillation
depends on the size of the spatial domain. For this, the results for the two-patch
Lotka–Volterra model need to be extrapolated to general spatial models. We shall
do this for a chain of identical patches for which the local dynamics are given by

f (xj ) =
(
rHj − HjPj

HjPj − µPj

)
(14)

where xj = (Hj , Pj )
T .

In the two-patch model, the reduction in the possible amplitudes is strongest
when the prey are sessile and only the predators migrate (Jansen, 1994). We shall
therefore use

M =
[

0 0
0 mP

]
.
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For a chain of two patches the matrix C, as defined by (12), has the eigen-
values 0 and −1. The subsystem of the form (3) corresponding to the eigenvalue
0 is just the linearisation of the single patch Lotka–Volterra model. Given s(t), a
periodic solution of the non-spatial Lotka–Volterra system (which, by definition,
has s(t + T ) = s(t), where T is the period of the oscillation), we immediately
see that the corresponding spatially homogeneous solutions of the spatial model
exhibit at best neutral stability. But we shall now see that it is possible for migration
to destabilise such solutions. We consider the following subsystem, corresponding
to the eigenvalue −1 of C,

ẋ = (Df (s(t)) − M)x. (15)

The stability properties of the above system can be established by numerically
integrating the system of differential equations. If x grows away from 0 the flat
solution is unstable. A more formal, but essentially similar method, is to determine
the dominant Floquet multiplier of (15) (see e.g. Hartman, 1964). The values of
the multipliers of subsystems (15) with x = 0 depend on s(t). Fig. 2 shows that
system (15) is unstable for solutions s(t) which oscillate with a large amplitude.
For solutions which oscillate with a smaller amplitude, (15) has two multipliers
inside the unit circle. Between the neutrally stable and the unstable solutions, one
flat solution exists for which (15) has a multiplier at −1. In Fig. 2 the minimum
and maximum prey value of this solution is shown. To demonstrate the effect of
the size of the spatial domain on the observable oscillations in the predator–prey
model, we shall analyse the stability of spatially homogeneous solutions in longer
chains.

2 4 6 8 10

-6

-4

-2

0

1

mPLog H

unstable

unstable

neutrally stable

Fig. 2. A graph of the predator migration rate vs. the minimum and maximum of the prey
densities of the solutions of the Lotka–Volterra model s(t) for which (15) has a multipli-
er at −1. Flat solutions with a larger amplitude are unstable, flat solutions with a smaller
amplitude are neutrally stable. Therefore this graph also gives the maximum oscillation in
prey densities in a chain of two patches after transients have died out. Parameter values:
r = 1, µ = 2.
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For a chain of n patches the stability of the flat solutions is determined by n

subsystems (3). These subsystems are identical to (15) after a scaling of m with
−λi . The stability of flat solutions of any chain can thus be derived from a chain
of length two. For instance, for a chain of three patches the relevant eigenvalues
of C are − 1

2 and − 3
2 . To establish the size of possible oscillations for a given mP

the graph in Fig. 2 has to be read at 1
2mP and 3

2mP . Since a flat solution that is
unstable for any of these two values will not be observed, only the most restrictive
value matters. In this way a diagram of the maximum possible oscillations versus
the length of the chain can be constructed (Fig. 3).

With increasing chain length, the number of eigenvalues increases and it
becomes more likely that there is an eigenvalue at or nearby the minimum of
the graph in Fig. 2. Thus, the range of predator migration rates for which the oscil-
lations will be reduced will increase with the size of the spatial domain (the number
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# of patches
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(b)

Fig. 3. Logarithm of the maximum and minimum prey densities of solutions of the non-
spatial Lotka–Volterra model, for which a chain of patches is still stable vs. chain length.
This also represents the maximum observable oscillation after transients have died out as
a function of the size of the spatial domain. The dashed lines give the minimum of Fig. 2.
Parameters: r = 1, µ = 2 and in (a) mP = 10, in (b) mP = 0.25.
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of patches). For migration rates larger than that for which the curve in Fig. 2 attains
its minimum, the amplitude of the maximum observable oscillations will converge
towards the minimum for a two patch system, as can be seen in Fig. 3a. For smaller
migration rates the observable oscillations converge with increasing domain size
towards either the minimum value possible or to the maximum possible oscillation
in a chain of two patches with twice the migration rate (Fig. 3b). (This is again
a consequence of the fact that the smallest eigenvalue of C goes towards −2 as
the length of the chain goes to infinity.) Closed orbits that are neutrally stable can
only become unstable, never stable. As in the previous example, the spatial interac-
tion can only destabilise the dynamics, but in this example this comes with a little
twist. As only the homogeneous oscillations with a larger amplitude can become
unstable, but not the ones with a small amplitude, the spatial interactions result in
dynamics which oscillate with smaller amplitudes. Thus spatial interactions result
in the reduction of the amplitude of spatial predator–prey oscillations. An increase
in the number of patches generally tends to decrease the observable amplitude, but
this decrease is not strict.

5. Discussion

Local stability analysis of spatially homogeneous solutions in n-patch k-species
systems can, once the eigenvalues of the connectivity matrix are found, be reduced
to finding the stability of n corresponding k-dimensional systems. For the local
stability analysis of a spatially homogeneous equilibrium this might be sufficient to
make the algebra tractable, as illustrated for the predator–prey model with a pool of
dispersers. For periodic or chaotic solutions, it is unlikely that the stability criteria
can be derived in closed form. The results presented here can still greatly reduce
the numerical effort, because the stability analysis can be reduced to that of a lower
dimensional system. This is illustrated for the spatial Lotka–Volterra model.

Once the connectivity matrix is known, all that is needed for a stability analysis
are the eigenvalues. For regular spatial systems, such as a chain of patches with
equal spacing, the eigenvalues can be found in closed form (see also Othmer and
Scriven, 1971; May, 1974, for results on eigenvalues of possible connectivity matri-
ces). Finding the eigenvalues of connectivity matrices for irregular spatial systems
in closed form might turn out to be cumbersome, if not impossible. In such cases
the results presented here can be used after the eigenvalues have been established
by numerical means. This approach might be useful (e.g. Adler and Nuernberger,
1994) for spatial systems in which the stability depends on the spatial arrangement
of the patches. In the discussion and proofs of the stability results, we assumed that
it was possible to diagonalise the connectivity matrix, but this is not always the
case. In some instances when the C matrix has repeated eigenvalues there may not
be n linearly independent eigenvectors. In such cases, a similarity transformation
can reduce the C matrix to its Jordan canonical form, containing its eigenvalues
on the diagonal, a distribution of zeroes and ones on the superdiagonal, and zeroes
elsewhere. (Note that the diagonal case is simply a special case of this general
form.) This can still lead to a considerable decoupling of subsystems, and thus the
technique may still be useful in such cases.
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Further simplifications arise if migration rates are the same for all species,
most notably that the stability properties of spatially homogeneous states can be
determined from those of a single uncoupled patch. When migration rates differ,
diffusive instabilities can arise. The analysis is analogous to the analyses of Tu-
ring instabilities in continuous space reaction difusion models (Segel and Jackson,
1972; Kot, 1989; Murray 1989; Neubert et al., 1995).

The results presented can be applied in data analysis. When the habitat of a
species consists of disjoint patches, the spatial data cannot be analysed by standard
methods such as Fourier analysis. The results presented here are a starting point
for the analysis of such data. We saw above that the transformation defined by the
matrix A plays a similar rôle in the analysis of spatially discrete systems to that
played by a Fourier transform in the analysis of continuous spatial systems. When
the spatial data are described as a linear combination of the eigenvectors of the con-
nectivity matrix, instead of a Fourier series, they might reveal a spatial pattern. This
can work, for instance, in a spatial system where external noise keeps bringing the
spatial system back to the spatially homogeneous state, while deterministic forces
try to bring the system away from this state. Then, the eigenvectors corresponding
to the eigenvalues for which the subsystems (3) or (6) are unstable, should explain
a large part of the spatial variation.

Here it is assumed that the geographical arrangement determines the connectiv-
ity between patches for all species in the same way. If this assumption does not hold,
it is still possible in some cases to apply an analysis similar to the one presented here
if the connectivity matrices for all species all have the same eigenvectors (Othmer
and Scriven, 1971; Allen, 1975). This requires that the connectivity matrices com-
mute (Allen, 1975). Throughout this paper it is assumed that dispersal is a process
in which individuals leave their patch with a fixed probability. This probability can
depend on the density of other species in the patch. The framework presented here
can be generalised to accommodate for this and behaviourally motivated submodels
can thus be incorporated in multi-patch models and in models for aggregation.

Appendix

The main result we shall prove here is that the differences in densities between
the patches disappear for all solutions with positive initial conditions of (2) with f

given by (14), i.e,

ẋj =
(
Ḣj

Ṗj

)
=
(
rHj − HjPj + mH

∑n
i=1 cijHi

HjPj − µPj + mP

∑n
i=1 cijPi

)
. (16)

When the movement of the individuals is undirected we shall present a complete
proof. For directed movement we did not succeed in formulating a concise and
precise proof and we shall only deal with a special case. For undirected movement
the probability for an individual to migrate from patch i to patch j is identical to
the probability to migrate from patch j to patch i hence w1j cij = w1icji . (Notice
that we do not assume that the patches are of equal sizes.)
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To prove that in the spatial Lotka–Volterra system all differences between patch-
es disappear asymptotically, the function

Vi = Hi − µ ln Hi + Pi − r ln Pi.

is defined. We shall show that the function

V =
n∑

j=1

w1jVj

is a Lyapunov function for all orbits of (16) with positive initial conditions. The
vector w1 = (w11, . . . , w1n)

T is the right eigenvector of C with eigenvalue 0,
hence

∑n
j=1 w1j cij = 0 for all i = 1, . . . n. First, observe that each Vi ≥ 0 for all

Hi ≥ 0, Pi ≥ 0. For mH = 0, the derivative of V with respect to time is

dV

dt
= mP

n∑
j=1

w1j

n∑
i=1

cijPi − rmP

n∑
j=1

w1j

n∑
i=1

cij
Pi

Pj

= mP

n∑
i=1

Pi

n∑
j=1

w1j cij − rmP

n∑
i=1

n∑
j=1

w1j cij
Pi

Pj

.

Since w1 is an eigenvector of C with eigenvalue 0, the first of these terms is equal
to zero. Turning our attention to the second term, we first split it in two equal terms,
then we relabel i and j in the second of these and swap the order of summation.

dV

dt
= − rmP

2


 n∑

i=1

n∑
j=1

w1j cij
Pi

Pj

+
n∑

i=1

n∑
j=1

w1j cij
Pi

Pj




= − rmP

2


 n∑

i=1

n∑
j=1

w1j cij
Pi

Pj

+
n∑

i=1

n∑
j=1

w1icji
Pj

Pi


 .

Now we make use of migration being undirected (w1icji = w1j cij ) to give

dV

dt
= − rmP

2

n∑
i=1

n∑
j=1

w1j cij

(
Pi

Pj

+ Pj

Pi

)

= − rmP

2

n∑
j=1

n∑
i=1

w1j cij
(P 2

i + P 2
j )

PiPj

.

Finally, we again make use of the fact thatw1 is an eigenvector ofC with eigenvalue
0 to write

dV

dt
= − rmP

2

n∑
j=1

n∑
i=1

w1j cij

(
(P 2

i + P 2
j )

PiPj

− 2

)

= − rmP

2

n∑
j=1

n∑
i=1

w1j cij
(Pi − Pj )

2

PiPj

≤ 0



250 V.A.A. Jansen, A.L. Lloyd

All ω-limit sets of orbits of (1) with positive initial conditions are contained in the
invariant subsets of the set in which V̇ = 0, which is the set for which Pi = Pj

for all i, j . It follows directly from (16) that only the subsets for which Pi = Pj ,
Hi = Hj are invariant. Hence, when there is undirected movement and the prey are
sessile, all orbits of (16) with positive initial conditions converge to the set where
Pi = Pj and Hi = Hj for all i, j .

When the prey are mobile, i.e., mH 
= 0, V is also a Lyapunov function (which
can be easily shown by an argument similar to the one given above) and all differ-
ences between the patches disappear asymptotically.

One of the simplest examples of directional movement occurs in a system of 3
cells. The matrix C = Cu + Cd can be seen as a sum of directed and undirected
movement, where Cu = {cuij } and Cd = {cdij }. The entries of these matrices are
given by

cuij = min(w1j cij , w1icji)

w1j
, for i 
= j, and cujj = −

3∑
i=1,i 
=j

cuij ,

and

cdij = w1j cij − min(w1j cij , w1icji)

w1j
, for i 
= j, and cdjj = −

3∑
i=1,i 
=j

cdij .

Note that (1, 1, 1) is a left eigenvector of Cu and Cd . Directed movement can
result in movement in only two possible directions, and the matrix Cd is of the
form w13c

d
13 = w12c

d
32 = w11c

d
21 and cd12 = cd31 = cd23 = 0 while for all i,

∑3
j=1

w1j c
d
ij = 0 (or w11c

d
31 = w13c

d
23 = w12c

d
12 and cd13 = cd32 = cd21 = 0, which can

be dealt with similarly). The derivative of the Lyapunov function V then is

dV

dt
= mP

3∑
j=1

w1j

3∑
i=1

cijPi − rmP

3∑
j=1

w1j

3∑
i=1

cij
Pi

Pj

= −rmP

3∑
j=1

3∑
i=1

w1j cij
Pi

Pj

= −rmP

3∑
i=1

3∑
j=1

w1j c
u
ij

Pi

Pj

− rmP

3∑
i=1

3∑
j=1

w1j c
d
ij

Pi

Pj

= − rmP

2

3∑
j=1

3∑
i=1

w1j c
u
ij

(Pi − Pj )
2

PiPj

−rmP

(
w13c

d
13

P1

P3
+w12c

d
32

P3

P2
+ w11c

d
21

P2

P1
−w13c

d
13−w12c

d
32 − w11c

d
21

)

≤ − rmP

2

3∑
j=1

3∑
i=1

w1j c
u
ij

(Pi − Pj )
2

PiPj

− rmPw11c
d
21

(
2

√
P1

P2
+ P2

P1
− 3

)

≤ 0
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where the one but last step used the fact that P1/x + x/P2 has a minimum value
of 2

√
P2/P1. By completing the argument as above it follows that the differences

between patches will disappear asymptotically in a system of 3 cells. A similar
argument can be constructed for larger circular systems with directed movement.
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