Text S1: Parametric uncertainty quantification

We gauged the level of uncertainty related to v@loleeach parameter based on both
literature and expert knowledge. For use of experbwledge, we conducted
workshops in 2008 and 2009 that included membersuofown lab and two other
mosquito ecology labs: Professor Thomas Scott’s(Liadiversity of California, Davis)
and Professor Laura Harrington’s Lab (Cornell Ursitg). In the workshops, we
explained the meaning of each parameter to thé&cpemts and we described to them
our approach for visualizing and quantifying valoeésincertainty (see Figure S1.1).
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Figure S1.1 Probability distributions used to discdiffering levels of uncertainty in
the value of a parametes, whose default value igetauirand for which the lower and
upper limits arexmin andxmax Uncertainty in the value ofis described by a beta
distribution, with the scaled valye= (X — Xmin)/( Xmax - Xmin) following a beta
distribution with parameters andp. We takea =y (Xgefautt— Xmin)/( Xmax - Xmin) @andp
=Y (Xmax— Xdefaul)/( Xmax - Xmin). The parametey characterizes the confidence in the
default value of the parameter, witlx 4 if confidence is lowy = 10 if confidence is
moderate, angl = 20 if confidence is high. For the examples shom& have assumed
thatxqetauit falls exactly halfway between the lower and ugpeits, i.e. Xgetaut = ( Xmin
+Xmax )/2, giving symmetric distributions. In generabwever, the distributions are
asymmetric aboUtyefaurs

The participants were asked to provide, for eachmater, their expert opinion on the
extreme possible values the parameter could taéiehamr confidence in the default
value of this parameter (the assumed most likelyevhased on data and experience),
expressed as one of four levels of confidencenlganfidence; 2) low confidence; 3)
moderate confidence; and 4) high confidence (sger€&iS1.1). We emphasized to the
participants that we wanted their answers to refes much as possible, the views of
the mosquito ecology research community. We theineld the range of possible
values for each parameter based on the collecteibop on extreme values, and we
used the expressed level of confidence to defiagtbbability distribution of specific
values within this range. If we had no confidenced particular default value, then
we assigned a uniform distribution to the probapidistribution over the possible
range. Otherwise, we used a beta distributioneslced the possible range, to assign
higher probabilities to values near the defaultugalsetting the likelihood of the
default value in the low, moderate and high confaescenarios to be approximately
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1.5, 2.5 and 3.5 times as large as that defin¢ldeiuniform distribution (Figure S1.1).
Generally, experts in the workshops agreed onahgeas and confidence levels in the
default value for each parameter. When there wascowsensus, we used the
minimum value provided for the lower range and maxn value provided for the
upper range. For the confidence levels in defaalues, we used the levels with
majority agreements.

For parameters not directly measurable in thel faglin the lab, it was difficult
for the experts to provide their knowledge aboetuhcertainty. For most parameters,
the literature provides both means (default valums) estimates of experimental
uncertainty (e.g., standard errors). However, fmameters in the weight gain model
and in the development rate model (see Text S2S8)d where the original paper
only reported the estimated values but no assaciateertainty, we digitized figures
in the original paper and re-estimated the parameteget their possible ranges and
the confidence levels of default values (see Té&x2® &nd S1.3).

S1.1. Uncertainty in survivorship

In Skeeter Buster, adult mosquito survivorship edther be assumed to be
age-independent or age-dependent. In this uncirtamalysis, we assume that the
survival rate is constant. Since the effect of dgpendent survival for female adults
only becomes evident after about 20 days in laboyaexperiments [1], this
assumption should not have a major effect on thiditsaof our uncertainty analysis
results given the shorter life-spans of mosquitngbe field resulting from predation
and other environmental factors. Based on our s and the literature [2,3,4,5,6],
the default value for nominal survival rate for f@madults and male adults is set at
0.89 and 0.77 respectively. Uncertainty in the mahsurvival rate is assigned with a
range from 0.75 to 0.99 and a range from 0.72 99 @or female adults and male
adults, respectively. Based on our workshops, weclode that there is moderate
confidence in the default values. It should be bom mind, particularly when
considering values at the upper ends of these sanlgat Skeeter Buster considers
additional effects of temperature and moisture @sanito survival. See Table S1, S2
and S3 for details on our use of categories of idente and quantifications for
survival parameters of adults, larvae, pupae agd.eg

S1.2.  Uncertainty in weight gain model

Uncertainties in the parameters of larval weight gaodel are defined based
on a re-estimation of parameters using the larvelgit data from Gilpin &
McClelland [7] and a Metropolis-Hastings fittinggakithm [8,9] (see Text S2 for
details). Based on the defined uncertainties inehpdrameters, for a 200ml cup with
40 mg liver powder and 20 larvae (initial weigh0:001 mg), the 95% confidence
interval for predicted weight after 4 days rangetwieen 0.28 and 0.62 mg (see
Figure S1.2). Uncertainty in the predicted weighingis relatively larger for larvae
with higher body weights due to the propagatioruntertainty in the weight gain
model.
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Figure S1.2 Uncertainty in the predicted larvalgis by the weight gain model with
parametric uncertainties defined in Table S4.aHitj 40 mg of food and 20 larvae
are present. The yellow, green, blue and grey beasmiesent the 50% ,75% ,95%
confidence interval of the prediction, respectivdlige grey band represents the
output boundary. The central blue line is the mediymbols depict data points from
Gilpin & McClelland [3] (squares: “house strainfigngles: “bush strain”).

S1.3.  Uncertaintiesin development times

Uncertainty in the estimation of development timess calculated based on a
re-estimation of four parameters in a enzyme kisethodel [8, see eq. (S7)] using
data from the literature (Tun-Lin et al. [9], Rueeiaal. [10], Focks et al. [11] and
Farnesi et al. [12]) and a Metropolis-Hastingsirfgt algorithm (see section S3 in
Supplementary Materials). We used standard dewisitaf estimated development
times from the literature to construct possiblealegment time ranges at different
temperatures. These ranges defined our uncertiairibe development rate response
curve as a function of temperature. This uncenaimtthe functional curve was of
more interest to us than uncertainties in indivicheameters of the enzyme kinetics
model, since the parameters themselves have lirbitddgical meaning [13]. Instead,
the use of this model should be seen as a meammsiruct a non-linear relationship
between development and temperature. The uncertairihe estimated relationship
between temperature and development rate itseltheasfore more relevant than the
uncertainties associated with each individual patam

We represented uncertainty in the response of dpaent rate to temperature
with an ensemble of 2000 development rate respausees generated by the
Metropolis-Hastings method. A development rate easp curve corresponds to a
specific value of each of the four parameters i@ #mzyme kinetics model, and
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defines the relationship between development ratd temperature. For the

uncertainty analysis of the Skeeter Busteodel, we draw random samples of
development rate response curves from the ense(abke Text S3 for details) to

guantify the amount of uncertainty in model outpzastributed by uncertainty in the

estimated relationship between temperature andaawent rate.

The resulting temperature-dependent uncertainbesdévelopment times for
eggs, larvae, pupae and gonotrophic cycle duraaomshown in Figure S1.3. We can
see that uncertainty in development time is reddyivhigh at lower temperatures,
which is attributed to three reasons. First, loteenperatures lengthen the time taken
to complete the life stage, which gives a highaeptal for individual variability to
accumulate. Second, the lower survival rate dueetyg low temperature will result in
a reduced number of individuals completing the Hjgestage, with the resulting
smaller sample size leading to lower confidencetlierestimated development time.
Third, the model structure itself may not be aldlecapture the development time at
extreme environmental conditions. This is one typstructural uncertainty. The large
uncertainty at lower temperatures may play a laode in temperate areas, but may
not have much effect on model predictions for dudyg area since the temperature
there is generally higher than 20 (see Figure S3).
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Figure S 1.3 Uncertainty in the estimation of depehent times for (a) eggs, (b)
larvae, (c) pupae and (d) gonotrophic cycle dunadie functions of temperature. The
embryonic development times for eggs are estimaésed on data from Farnesi et al.
[12]. The development times for larvae and pupaesatimated based on data from
Rueda et al. [10] and Tun-Lin et al. [9]. The estiet uncertainty encompasses data
from Kamimura et al. [14]. In panels (b) and (bk tircles represent data from Rueda
et al. [10] and the squares (shifted to the righ®% °C to aid visibility) are data from
Tun-Lin et al. [9]. The triangle points (shiftedttee left by 0.5 °C to aid visibility)
represent the data from Kamimura et al.[14]. Theog@phic cycle durations are
estimated based on data from Focks et al [11].vEnical lines indicate the standard
deviations (+/- one standard deviation) of the tgwment times. The central line
represents the median of the prediction basede@pdhameter sets sampled by FAST.
The yellow, green, blue and grey bands represer®o ,75% ,95% confidence
interval of the prediction, respectively. The gl&nd represents the output boundary.



S1.4.  Uncertainty in spatial dispersal

There is a large amount of uncertainty in the estinofAe. aegyptdispersal [see
15, Chapter 15 for a review]. The maximum dispedsstance ranges from 100 to 800
meters. The spatial dispersal rate is mainly egéchabased on the
mark-release-recapture approach and the associatatainty is assumed to result
from different factors including sampling errorcapture rate, mosquito survival,
breeding site availability, and environmental hegeneity. In the Skeeter Buster
model, two types of dispersal are used to modelgoits movement: short-range
dispersal (dispersal to a neighboring house), and-fange dispersal (dispersal from
the original house to any other within a specifisdximum dispersal distance).
Harrington et al. [16] showed that, in their maekease-recapture experiments, the
majority of mosquitoes (72% of males and 65% ofdkas) were captured in houses
adjacent to their outdoor release location durin@24capture days. Thus, our
assumption in the Skeeter Buster model that sloge dispersal between
neighboring houses is the major dispersal mechansngonsistent with these
observations. An adult mosquito may, however, nsli@t-range dispersals on more
than one day, so its lifetime dispersal could caeexeral houses [17]. The uncertainty
range of daily probability of short-range disperisatlefined between 0.05 to 0.5 with
a default value of 0.3, which is fitted using Hagton's data [16,17]. The daily
probability of long-range dispersal is defined betw 0 and 0.1 with a default value
of 0.02. The confidence for default values of biettmale and male adults is defined to
be low based both on the literature and expertiopinrSee Table S5 for details of
uncertainty quantifications for all spatial dispEnsarameters.

S1.5. Correation among model parameters

Model parameters are often assumed to be indepertdewever, they may be
correlated as a result of common factors (e.g.,neom environmental factors or
factors controlling the different biological paraers). For example, if a specific
environmental factor favors survival of female aslulit is highly likely that the
survival of male adults will also be favored. Tle®sn lead to a correlation between
survival rates of male adults and those of femalelta. However, if we assume
independence of parameters, the sampling of paeamendertaken as part of the
uncertainty analysis could generate unrealisticlmoations (e.g., the survival rate for
male adults is very high while the survival rate female adults is very low). Thus, it
is important to incorporate potential correlaticaraong parameters. In uncertainty
analysis, taking correlation into account for linezodels (i.e., the model outputs are
linearly dependent on model parameters) can ofterease the amount of uncertainty
in the model's predictions if positive correlatio;mn assumed (due to the enhanced
population dynamics if sampled values of two patamseare both high, assuming
parameters are positively correlated with modepot)tand decrease the amount of
uncertainty in the model’'s predictions if negato@relation is assumed (due to the
balancing of population dynamics by low and highrapaeter values, assuming
parameters are positively correlated with modelpot)t However, for complex
models, the effects of correlation on uncertairdg be different due to the complex
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relationships (e.g., nonlinear and non-monotonitati@ships) between model
predictions and individual parameters.

For most of the parameters, it is difficult to esite the correlations among
them based on available data, thus the correlatadumes are simply a best estimate
from expert opinion. In this study, we assume &kraarrelation of 0.3 between
nominal survival rates for female and male adld&tyween nominal survival rates for
larvae and pupae, between the survival factor uhigr sun exposure and that under
high saturation deficit, between the short-rangpelisal probabilities for females and
males, and also between long-range dispersal pittilgsbfor females and males. A
correlation coefficient of 0.89 is assigned betweetercept and slope for lipid
prediction (see eq. (S2.6) in Text S2), which isdahon the data fitting using a linear
regression. All other parameter combinations aresiciered as being independent of
each other because we lack information that clearfjgests that a correlation exists.
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Text S2: Parameter estimation for thelarval weight gain model

The larval weight gain model [1] is governed by taguations:

dW( t) = aw( t)b(l_ e—cF(t) )

dt (S2.1)
dF() _ 1y IO

dt a dt

wheren (t) is the total number of larvae in the container(t)is the larval weight

(mg), and-(t) is the amount of food (mg) in the container at tim€he factoris the

conversion rate of consumed food to biomasepresents the body weight effect on
larval food exploitation rate, ardis the coefficient of food dependence, with a lowe
value indicating a stronger effect of food on largeowth (see Figure S2.1 for more
explanations) and a stronger effect of density ddpece on larval population

growth.
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Figure S2.1 Effect of the food amount in watertagrers on larval growth with
different coefficients of food dependence basedhlmnlarval weigh gain model as
specified in eq.(S2.1). A lower value of the coaéint of food dependence leads to a
stronger effect of food on larval growth.

In order to estimate the three model parameteex)in(S2.1), we assume that the
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observed data can be described by log-normal bligions as follows
logw(t) ~ N(logw(t), ,0°). (S2.2)
In other words, the logged larval weight is normalistributed with mean

i.e.,logw(t)_] predicted by the larval weight gain model andiaace o°. The
[ ol P y ght g

experiment use three different levels food inp@% g, 0.1 g and 0.04 g liver
powder in a 200 ml cup), four levels of larvae itg(8, 20, 51 and 128), two strains
(house and bush strain). With weight sampling atht@r intervals, there are 160
weight observation data points. Observations maddeafirst time point for each
experiment are taken as initial values for the Wwegain model in eq. (S2.1).
We employ a Bayesian approach to estimate modednpeiers. The prior

distributions for the parameters are specifiecbliews,

a ~ Uniform[0, 0.5]

b ~ Uniform[0,1]

¢ ~ Uniform[0,1] (S82.3)

iz ~ Gamma(0.001,0.00
g

where Uniformfa, #] represents a uniform distribution with on theemval [a, 5];

Gamma @, £) represents a gamma distribution. With the spettifirior distribution

for parameters and the statistical model for dpti$ied in eq.(S2.2), Bayes’ rule is
used to derive the posterior distribution for tla@gmeters given the observed data as
follows,

f(a,b,c,o” |W,....,w )

O f(w,....w, |a,b,co®)f(a)f(b)f(c) fe*) (S2.4)

= /—271702 )" expl- 2;-.2 Zl (logw; — logw, ¥ 1f (@) f (b) f(c) f@*)

where w,...,w, are the observed body weights apdare the predicted larval

weights. The function f(a), f(b), f(c),andf ¢° ) are the prior probability

distribution functions defined in eq. (S2.3). Sinte posterior distribution in eq.
(S2.4) can be very difficult to derive analyticallyin this study, the
Metropolis-Hastings approach [2,3] is used to deamples for the parameters from
the posterior distribution. Specifically, the alglom is implemented as follows,

1) Assign initial values toa, b, ¢c,0?;

2) Run the weight gain model in eq. (S2.1), whichuserically evaluated using
the Euler method,;

3) Calculate the posterior likelihood (a,b, c,c? | w,...., w ) based on eq. (S2.4);
11



4) Propose new values for parameters with a multitenarmal distribution

a=a,b=W, c=t o°=0*;

5) Calculate the posterior likelihood (a*, b, ¢, o*| w...., w) based on eq.

(S2.4);
6) Draw a random samplefrom uniform [0,1]. If

U< f(ax br, & o*| W...., W)
f(a,b,co? |W,...w )

then accept the new proposed parameter valueswosieestay put.

7) Repeat step 4)-6).

It can be shown that sample drawn by the Metrogddéistings method will follow the
posterior distribution using the fact that the Marlchain is stationary if the proposal
distribution is symmetric [4].

In this study, we run a chain of 150,000 iteradi@md a burn size of 50, 000 (the
initial sequence of samples that is discarded itmiehte dependence on the initial
choice of parameter values). We calculate thessitzgi of estimated parameters using
every tenth sample of the parameters (to reduceetteet of auto-correlation on
sample statistics) (See Table S2.1).

Table S2.1 Estimated parameters for the weight gaidel

2

a b c ag
mean 0.32 0.80 0.55 20.07
Standard deviation 0.0077 0.0060 0.25 2.25

The weight gain model in eq.(S2.1) specifies thiegnewth of larval weight. A
full version of the weight gain model has an addi#il term for metabolic weight loss
as follows,

T - amwegra- 60 - gy (S25)

where dw(t)* represents biomass loss due to metabolic actditg the coefficient

of metabolic weight loss, with a higher value irading higher amount of energy is
used for metabolic activity, ard} represents the effect of body weight on metabolic
activity and is commonly set at 2/3 [5]. Since thetabolic weight loss term in the

larval weight gain model (i.e.d,w(t*) is not identifiable based on the available

data, the coefficient of metabolic weight loss.(igh) was assigned with a range
between 0.005 and 0.032 based on expert opiniois. Mikeans that the percent of
weight loss by metabolic activities is betweend@n8l 3.2 percent of body weight gain
with no food constraint.

If there is no food available in the container,nthiee amount of lipid reserve
in larva’s body can be crucial for survival. In 8k&r Buster, the amount of lipid is
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calculated using the following linear function betlogged larval weight, obtained by
applying linear regression to data from Gilpin &cClelland [5],

L(t) =L, InW(t) + L, (S2.6)
whereL(t) is the percentage of lipid weight in the larva’'sipat timet. The L and L
are the slope and intercept, respectively. The naganstandard deviations af and

L. (see Table S4) are estimated based on fittinth@flinear regression to the data

from Gilpin and McClelland [5].
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Text S3: Parameter estimation for the enzyme kinetics model

The developmental rates of different life stagethan Skeeter Buster model are
simulated based on an existing enzyme kinetics imgdde This enzyme kinetics
model assumes that development rate is determiped Bingle rate-controlling
enzyme and that the enzyme is denatured at highomntemperatures. A simplified
version of this model [2] is used in the SkeetestBumodel, assuming inactivation
only at high temperatures. The developmental satmaiculated based on a nonlinear
equation with four parameters,

AHA 1 _1)
Tt R "298 T,

_ Ps o) 2908
r(M)= M. T T (S3.1)
1+e R T1/2H -If

wherer(T) is the developmental rate Mrat temperaturd (K) on dayt, T; is the
water temperature for all immature stages andeanperature for adulte(25°C) is
the development rate (Ar at 25°C assuming no temperature inactivation hef t
critical enzyme;AHA” is the enthalpy of activation of the reaction catatl by the
enzyme (cal/mol);AHy is the enthalpy change associated with high tenera
inactivation of the enzyme (cal/mol); afig (K) is the temperature at which 50% of
the enzyme is inactivated from high temperature.

In order to estimate the model parametdis, (0(25°C) , Tion and AHAY), we
assume the observed data follow normal distribstasfollows

D(T) ~ N(D(T)p,a2 (M) (S3.2)
where D(T),is the predicted development time at temperafuusing eq. (S3.1) and

o’(T) is the standard deviation of the observed devetmrimes at temperatufe.

We use development time data at different temperatérom Farnesi et al.[3] to
estimate the embryonic development rate (see Figlr8 in Text S1). Since the
standard deviation for mean development time iy \@v due to the well-controlled
laboratory conditions of the experiment, we incestiee standard error proportionally
based on data utilized by Focks et al. [4] to estéregg development time to reflect
the view that the field environment can cause higlagability in development times.
The development times for larvae and pupae armatdd based on data from Rueda
et al [5] and Tun-Lin et al [6]. The means and d&ad errors at different temperatures
are weighted for different data sources with thégihts chosen to be proportional to
the sample sizes. The development times of gonleitogycles are estimated using
data from Focks et al [4].

We employ a Bayesian approach to estimate modelnpeters. The prior
distributions for parameters are specified as Yadlo
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T, ~ Uniform [300, 330]

yo) ~ Uniform [0,1]
C (53.3)
AH,* ~ Uniform [1000, 20000(

AH,, ~ Uniform [1000, 200000]

Based on the specified prior distribution for mogarameters and the statistical
model for data in eq. (S3.2), Bayes’ rule is useddrive the posterior distribution for
the parameters given the data as follows,

f(T g AH,” AH, |D,,...D,)
O Py AH,” AH,, |a,b,co? ) f(T) fOg ) FO H)fQH,) (S3.4)

P SN RVSTI SR DA )
=( Tnoi?) exp[ ZUiziZ:l:(Di D, Y1 () f(O59) f (OH) F(AH,)

where D,,....,.D, and g,,....,0,are the mean and standard deviations of observed
development times at different temperatufes, ), f(p(zsoc)), f(AH,”),andf QH,, )

are the prior distribution function as defined @ €53.3). Similar to the estimation of
growth model parameters, the Metropolis-Hastingg@gch is used to draw samples
for parameters in the enzyme kinetics model from plosterior distribution in eq.
(S3.4). In this study, we run a chain of 150,0@0ations and a burn size of 50, 000.
The estimated statistics for the posterior distrdyu(sampled every 50 steps on the
Markov chain sequence) are shown in Table 3.1.

Table S3.1 Estimated parameters for developmeestiof
different life stages obtained using the Bayes@ra@ach
described in the text (Values in parentheses arelatd errors).

Parameters

Life Stages
p(252C) AHY Tyon AHy

Eggs 0.34 14265 312.17 88762
(0.06) (5518) (6.73) (55073)

Larvae 0.201 26372 305.61 55648
(0.049) (9540) (6.71) (18910)

Pupae 0.483 15497 316.91 40605
(0.121) (3427) (7.90) (29622)

Gonotrophic 0.233 15106 319 100375
cycles (0.044) (3513) (6.87) (59600)

Since we are more concerned with the overall dautions to variances of model
outputs by the uncertainties in development rages fanctional curve (or a profile) of
temperature rather than the contribution by indiaid parametefswe used a
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profile-based sampling approach to sample the dpweént rate profiles. The main
idea of the profile-based sampling is that, we tihgemean development time under
the temperature range between 24€28which is the most relevant ranges in our
study area, to draw random samples of developnadat-rprofiles. Each
development-rate profile will correspond to a meanelopment time (Figure S3.1).
For the uncertainty analysis, instead of drawingas for the parameters, we draw
a sample for the mean development time between 823-2For each mean
development time drawn, we get corresponding pa@amelues for the enzyme
kinetics model using a pool of 2000 developmerg @abfiles (each with a specific
set of parameter values) generated by the Metreyptdistings approach.

Profile 1: Tt, P2sec), AHas, and AHy

Profile 2: Tt", Pasec), AH’a¢, and AH’y

Development time

Temperature range

v

Temperature

Figure S3.1 lllustration of mean development timthinw a specified temperature
range as a surrogate for sampling of developmerd firofiles. Development time
profiles are profiles (or curves) assigning develept rates under different
temperatures, determined by an enzyme kinetics hnoaeg.(S3.1). Profile 1 and 2,
both with a unique set of parameterS(zs«, AH.. andaH, ), are represented by the mean
development time within the specified temperatarege (24-2& in this study).
Each profile in a 2000 profile pool generated byetropolis-Hastings algorithm
corresponds to a mean development time withinpleeiBed temperature range. For
each sampled value of mean development time, aswonding development profile
in the pool with the same (or closest) mean dewetayg time will be selected to
predict the development rate at different tempeestu
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Text $4: Quantification of stochastic uncertainty

The predicted population density (for either a fpebouse or at the community
level) for a given life stageat timet, denoted\;(t), depends both on the parameter
values of the model and on random noise (arisingmfrdemographic and
environmental stochasticity). We can write

N (1) =u (1) ()
where u, (t)is the mean population size arglt) is the random noise. If we have
two realizations of the model carried out usinggshme parameter values, then
NG (t) =N, (t) =« (1) - ¢'(9.
Calculating the variance of both sides of the almygation, we can show that
Varfe, (t)]=Var[N; (t)- N, (t)]/ 2.

This indicates thalve can estimate stochastic uncertainty by runrinegnodel twice
for each parameter set sampled by FAST. Namely,

Varle, ()= 53[0, % (1)-5,,% (1)
i=1
where D, (t) indicates the difference between two replicates tfhe jth FAST
sample D, ¥ (t) =N/ (t) =N, (t)]; andn is the FAST sample size (5000 in our study).

Finally, we can use the ratio ofare, (t)] to the total variance of, (t) to measure

the proportion of stochastic uncertainty in the ylapon density prediction at the
community or individual-house level.
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Text S5: Spatial statistics

In this study, we use three spatial statistics @& I, Getis G* (d) and
semivariogram) to measure population distributiattggn. The Moran’s Index, was
proposed by Moran in 1950 to evaluate whether aiappattern is clustered,
dispersed, or random [1]. A Moran's Index valuernehO indicates clustering, an
index value near -1.0 indicates dispersion, andnaex of O indicates complete
randomness. The specific formula for calculating Moran’sl is as follows,

N B w000

ZiZ,‘WiJ Zi(x_7)2
whereN equals the number of observatiowg;is the weight between locationandj;
X andx; are the values at locationandj; x is the average over all locations of the
variable. In this study, the weight; is proportion to the inverse distance between
houses.

The GetigGi*(d) statistic is used in this study to identify hpots for food inputs

at individual houses. The formula f6r*(d) is as follows [2,3],

2w (d)x =3 w(9 x

SJ[ NS W9 -(3 Wl 9 N

wherew;(d) is the weight between locationandj with a specified threshold distance
d, which is used to specify the neighborhood size rdoof the house of interest to
examine if this house is a local high/low densjipts and S is the standard deviation
of all observations. In this study, we selegf(d) based on the inverse distance
throughout the study area (i.d.is sufficiently big to incorporate all houses),iahis
same as that in the calculation of Morah'sGi*(d) has an asymptotic normal
distribution. Az-score can be calculated to see if the populatidhinva specific
house is significantly higher/lower than its neighimood.

The semivariogram is a function of distance déstg the degree of spatial
dependence of a spatial random process [4]. Timeuiaris as follows,

Gi*(d) =

"= |'\'(h)|uDN(h)‘)ﬂ X]‘

where N(h)is the set of data point pairg ( ;) that are distance apartand |N(h)|

represents the number of data point pairs. A higlaeue of r(h) indicates lower

spatial autocorrelation. Generally, the spatialoazdrrelation will decrease with

distanceh and finally stabilize. The range (i.e., the dis@mafter whichr (h) starts to
stabilize) can be used to indicate the strengpatial auto-correlation.
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Text S6: Temporal variability of population density at the community level

In this section, we examine temporal variabilitypopulation density at the community
level. Specifically, we assess contributions byedé&nt model parameters to uncertainty in the
predicted temporal coefficient of variation (CV).h& temporal coefficient of variation is
calculated as follows: for each simulation run, seasider the community-level daily population
densities seen over the second simulation yeasuleding the standard deviation and mean of
these densities. The CV is then calculated asdtie of these two quantities. The temporal CV
measures the relative temporal variability adjusigdopulation size. Temporal variability may
result from stochastic uncertainty, biological depenent cycles, environmental factors (e.g.,
extreme temperature) and temporal dynamics of f&dce stochastic uncertainty is a major
source of temporal variation, model parametersamphuch less of uncertainties in temporal CV
(generally less than 30% in total, see Figure $®d S6.2) compared to population densities at
the community level (see result section in the nbaxt). For the egg density, the nominal survival
rate for female adults and the gonotrophic devekgnrate are two important parameters
contributing to its temporal variability (Figure 36a). The survival rate becomes an important
parameter because it is a major factor affectingufadion size (see result section in the main text
for details), which will affect the population’sseptibility to stochasticity. Parameters important
for temporal variability in predicted larval poptitan density include the high temperature limit
for nominal egg survival, the high temperature tifor predator activities, as well as the nominal
survival rate for female adults (Figure S6.1 b)eThigh temperature limits are important for
temporal variability in the predicted larval popida density because the maximum water
temperatures on some days can reach (see Figuet®3high temperature limits for nominal
egg survival (defined as being betweefiQ8& 35°C) and high temperature limits for predator
activities (defined as being betweerf@%o0 35°C). Important parameters contributing to temporal
variability in the predicted pupal population dénénclude the survival rate for female adults, the
low temperature limit for nominal survival of puplaevae, the pupal development rate, and the
coefficient of food dependence (Figure S6.1 c). Toww temperature limit for survival of
larvae/pupae is important because the minimum wateperatures are partially covered by this
low temperature limit with its uncertainty rangdided between 13T to 20°C (see Figure S3 b).
The coefficient of food dependence is importantaose it will affect the food exploitation rate,
which can affect the temporal dynamics of food he tcontainers and the strength of
density-dependence effect on larval growth. Strolegsity dependence in larval growth as
determined by a small value of the coefficient @bd dependence will lead to more temporal
variability in population dynamics (see Figure $6.However, when the coefficient of food
dependence is larger than 0.4, it tends to havehnautess effect on temporal variability in
population dynamics. This is because density degraedin larval growth become weak and food
will only have effects on body growth when the fandccontainer is very low (see Figure S2.1 in
Text S2 for a better understanding).

For nulliparous female adults, the low tempeiumit for nominal survival of pupae and
larvae, and the survival rate of female adultsimgortant parameters contributing to its temporal
variability (Figure S6.2 a). Because the populatiignamics of parous female adults is mainly
affected by their survival rate (see result seciiomain text), the survival rate is also a dominan
factor affecting the temporal variability (Figuré.3 b), due to the fact that the population size ca
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affect the population’s susceptibility to stocheisfi (see result section in the main text for dsjai
Other important parameters contributing to the teralpvariability in predicted parous female
adult density include the gonotrophic developmete,rthe nominal survival rate for male adults,
and the low temperature limit for nominal surviwdllarvae/pupae. For temporal variability of
male adults, important parameters include the nahsiarvival rates for female and male adults as
well as the low temperature limit for nominal swaliof larvae and pupae (Figure S6.2 c).
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(a): Eggs [31.7 %]

x1: Nominal daily survival rate for female adults
x2: Gonotrophic development rate
x3: Physiological development threshold for later gonotrophic cycles

x4: Low temperature limit for nominal survival of pupae and larvae
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(b): Larvae [38.2 %]

x1: High temperature limit for nominal egg survival
x2: High temperature limit for predator activities
x3: Nominal daily survival rate for female adults

x4: Nominal daily survival rate for larvae

x1 X2 X3 x4 x5 X6 X7

Uncertainty contribution (%)

(c): Pupae [16.0 %]

x1: Nominal daily survival rate for female adults
x2: Low temperature limit for nominal survival of pupae and larvae

. x3: Pupal development rate

Figure S6.1 Uncertainty contributions by differemddel parameters for the temporal
coefficient of variation (CV) of (a) eggs, (b) laerand (c) pupae during the second

x1 X2 x3 x4 x5

Parameters

simulation year. The vertical bars represent tHé @6nfidence interval3he

percentage values in brackets represent overaeptages of variance explained by the

parameters shown in the figure.
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Figure S6.2 Uncertainty contributions by differemddel parameters for the temporal
coefficients of variations of (a) nulliparous femadults, (b) parous female adults
and (c) male adults during the second simulati@r.yEhe vertical bars represent the
95% confidence interval$he percentage values in brackets represent opEraéntages
of variance explained by the parameters showndtigure.
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Figure S6.3 Dependence of temporal variabilityepylation density at the
community level on the coefficient of food depencrThe coefficient of food
dependence accounts for about 1.3 % of uncertairtgmporal variability as
measured by the temporal coefficient of variationm the second simulation year.
The curves are fitted to the scatter plot of patemealues sampled by FAST and the
corresponding predicted coefficient of variatiorpirpal density during the second
simulation year using cubic smoothing splines wth SemiPar R package [1]. The
shaded areas are the 95% confidence interval®ditted lines.
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Text S7: Temporal variability of population density at the individual-house level

For uncertainty in the temporal CV (calculated vattime interval of 15 days instead of the
daily interval due to the large data storage resmént for densities of each life stage over 730
days for 5000 simulations) of population densitytte individual-house level, our results show
that CVs are relatively high where there is low ylagion density (Figure S7.1 a and S7.2 a). The
nominal survival rates of female adults and laraad the coefficient of metabolic weight loss,
which are important parameters contributing to patian density, are also important parameters
contributing to temporal variability (Figure S7.1d, d and Figure S7.2 b, ¢, d). In contrashto t
temporal variability in population density at thenemunity level, our results show that spatial
dispersal can be an important parameter contrigutio the temporal variability at the
individual-house level (Figure S7.2 f), with highgratial dispersal probability leading to lower
temporal variability in the population dynamics dsé&igure S7.3). Spatial dispersal also
contributes to the temporal variability in pupapptation density, but to a much lesser extent (see
Figure S7.1 f). The coefficient of food dependeisceery important for the temporal variability of
pupal population density in houses with relativeahyall food input and relatively high egg density
(see Figure S7.2 g), where there are strongertgestegpendence effects on larval growth. The low
temperature limit (10-2@) for nominal survival of pupae/larvae, whichrspiortant for temporal
variability at the community level, is not detecteaxk an important parameter at the
individual-house level. This is due to the fact wge a longer time interval (15 days) to calculate
the CVs, making occasional temporal variabilityg(edue to temperature falling below the low
temperature limit for nominal survival of pupae aladvae) less detectable. Since the high

temperature limit (25-3%&) for predator-dependent egg survival is moreuesly exceeded for
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the weather in Iquitos, it is an important parametentributing to temporal variability in

population density at the individual-house leveg(ife S7.2).
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(b) Proportion of uncertainty in temporal CV contributed by
female adult survival rate

(a) Mean temporal CV based on 5000 FAST samples

(c) Proportion of uncertainty in temporal CV (d) Proportion of uncertainty in temporal CV

contributed by larval survival rate contributed by coefficient of metabolic activity

(e) Proportion of u.ncertainty in tem.po.ral cv (f) Proportion of uncertainty in temporal CV contributed
contributed by high temperature limit for
predator-dependent egg survival predation by female adult short-range dispersal probability

P high : 0.02

B Low: 0

(g) Proportion of uncertainty in temporal CV

contributed by coefficient of food dependence

Figure S7.1 Mean temporal coefficient of variati(@V) for pupal population density at the

individual-house level (a) and the proportion otertainty in CV contributed by different model

parameters (b-g). To simplify this figure, only @aweters with maximum uncertainty

contributions larger than 0.03 are plotted excepptnel (f) for the comparison of the importance
of mosquito dispersal for different life stages. Wi not plot the proportion of uncertainty in CV

contributed by the nominal survival rate for maBuléss since the uncertainty contribution is
mainly due to its correlation with the nominal sual rate for female adults.
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(a) Mean temporal CV based on 5000 FAST (b) Proportion of uncertainty in temporal CV

samples contributed by female adult survival rate
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Figure S7.2 Mean temporal coefficient of variat{@V) for female adult population
density at the individual-house level (a) and thepprtion of uncertainty in CV
contributed by different model parameters (b-f).slrmplify this figure, only
parameters with maximum uncertainty contributicargér than 0.03 are plotted. We
did not plot the proportion of uncertainty in CVrntobuted by the nominal survival
rate for male adults since the uncertainty contidlouis mainly due to its correlation
with the nominal survival rate for female adults.
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Short-range dispersal probability for female adults

Figure S7.3 Dependence of temporal variabilityeméle adult population density at
an specific individual house (located &tréw from top and 8 column from left) on
short-range spatial dispersal. The short-rangeadssth accounts for 3.8% of
uncertainty in the temporal variability as measusgdhe temporal coefficient of
variation during the second simulation year. Theves are fitted to the scatter plot of
parameter values sampled by FAST and the corregmppdedicted coefficient of
variation in pupal density during the second simartayear using a cubic smoothing
splines with the SemiPar R package [1]. The shadeals are the 95% confidence
intervals of the fitted lines.
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Figure S1.

Survival factor as a function of temperature. Tinvival factor ranges between 0 and 1
and is multiplied with nominal survival rate to gkee temperature-dependent survival
rate. Tnin is the minimum temperature for survival, below géhthe low temperature
has a strong effect on mosquito survival (the sahfactor is generally less than 0.05);
Tiow IS the low temperature limit below which is suboyatl for mosquito survival; gign

is the high temperature limit above which is subopt for mosquito surivival; Faxis
the maximum temperature for survival, above whiehhigh temperature has a very
strong effect on mosquito survival (the survivaltéa is generally less than 0.05).
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Figure S2.

Survival factor as a function of saturation def(8D). The survival factor ranges
between 0 and 1 and is multiplied with nominal stakrate to get the
humidity-dependent survival rate. §lis the low saturation deficit limit below which
saturation deficit has little effect on mosquitovéwal. The survival rate decreases
linearly between SRy, and SDign, the high saturation deficit limit above which the
saturation deficit has a strong effect on mosagsutwival (survival factor is low).
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Figure S3.

Histograms of air and water temperatures (degretsiu@) in Iquitos for year 2000.
The container water temperatures are simulatedyaspolynomial function obtained
from a regression of water temperature on air teatpee and sun exposure for 12
containers monitored for 76 days in Gainesville, BEA[4]. The water temperature is
calculated assuming a sun exposure of 0.5 fordhtamer.

34



P High : 24.46

Figure $4.

Sum of daily food input from different containeks$nit: mg/day) at individual houses.
Each block/cell represents a single house. Theifgmats are fitted to the pupal data in
the mosquito survey at individual houses in Iqui. The food inputs are not
spatially clustered based on the Moran's | sta{i€i] using inverse distance weights (I
= 0.005, p-value = 0.82).
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Figure S5.

Dependence of community-level population densitgoefficient of metabolic weight
loss at different life stages. The curves aredittethe scatter plot of parameter values
sampled by FAST and the corresponding predictedlptipn densities using cubic
smoothing splines with the SemiPar R packd@&é. The shaded areas are the 95%
confidence intervals of the fitted lines.

36



(b) Standard deviation

| High :15.79
- Low: 1.07

(d) Proportion of stochastic uncertainty

L
B Low: 055 l‘ - Low: 0.56
4 g- J: i
| | HE B =3 J

(e) Proportion of uncertainty contributed by (f) Proportion of uncertainty contributed by
female adult nominal survival rate coefficient of metabolic weight loss for larvae
| | F "
§.| .|!" ﬁr
“J ! o '
I High : 0.09 - - High : 0.08
” g -l' "n . m
- I..-!.._lg .-Lowo . __.:_1" Low:0
(2 Proportlon ofuncertamty contributed (h) Proportion of uncertainty contributed
by larval nominal survival rate by male adult nominal survival rate

- SR
o -IJ ' ql . [ High - 0.10
.:;.I R L

(i) Proportion of uncertainty contributed
by male adult dispersal probability

Figure S6.  Uncertainty in the predicted male adult populatiensity at the individual-house level
on simulation day 720. For each individual house quantify uncertainty in the predicted population
density (as is jointly described by the (a) mebahstandard deviation, and (c) coefficient of vaoia of
predicted population density across the parametersampled by FAST), (d) the proportion of
uncertainty contributed by stochasticity, and (¢h& proportions of uncertainty contributed by sfiec
model parameters. To simplify this figure, onlygaeters with uncertainty contributions in any house
larger than 5% are plotted.
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Figure S7.

Uncertainty in the predicted egg density at théviddal-house level on simulation day
720. For each individual house, we quantify uncéetyan the predicted population
density (as is jointly described by the (a) mehah standard deviation, and (c)
coefficient of variation of predicted populationndéy across the parameter sets
sampled by FAST), (d) the proportion of uncertaiciytributed by stochasticity, and
(e—g) the proportions of uncertainty contributedspgcific model parameters. To
simplify this figure, only parameters with uncentgi contributions in any house larger
than 5% are plotted.
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Figure S8.

Uncertainty in the predicted larval population dgnat the individual-house level on
simulation day 720. For each individual house, wangify uncertainty in the
population density (as is jointly described by tagmean, (b) standard deviation, and
(c) coefficient of variation of predicted populatidensity across the parameter sets
sampled by FAST), (d) the proportion of uncertaiciytributed by stochasticity, and
(e—qg) the proportions of uncertainty contributedspgcific model parameters. To
simplify this figure, only parameters with uncentgi contributions in any house larger
than 5% are plotted.
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(a) Mean (b) Standard deviation

) O nigh : 47.54

B Low: 1.42

P nigh - 8.35

o6 g

(e) Proportion of uncertainty contributed by (f) Proportion of uncertainty contributed by
female adult nominal survival rate coefficient of metabolic weight loss for larvae

P High - 0.11

-Low:O

(g) Proportion of uncertainty contributed by (h) Proportion of uncertainty contributed by
nominal survival rates of larvae female adult short-range dispersal probablllty

Figure S9.

Uncertainty in the predicted pupal density at tidvidual-house level on simulation
day 720. For each individual house, we quantifyamtainty in the predicted population
density (as is jointly described by the (a) mehah standard deviation, and (c)
coefficient of variation of predicted populationndéy across the parameter sets
sampled by FAST), (d) the proportion of uncertaiciytributed by stochasticity, and
(e—h) the proportions of uncertainty contributedspgcific model parameters. To
simplify this figure, only parameters with maximwmcertainty contributions larger
than 5% in any house are plotted except for pdnelhich is shown for the
comparison of mosquito dispersal importance aeckfit life stages.
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Table S1 Uncertainties in the estimates of paramébe adults (15 parameters).

Lower Upper Default Confidence for

Parameter Description Sources
Range Range Value default value
A-FS Nominal survival rate for female adults 0.75 0.99 .80 Moderate [1,2,3,4,5],, Workshop
A-MS Nominal survival rate for male adults 0.72 0.99 70.7 Moderate [1,2,3,4,5], Workshop
Low temperature limit for nominal
A-TL 2 10 4 Low [6], Workshop
survival C)
High temperature limit for nominal
A-TH 35 40 39 Low [6], Workshop
survival C)
A-TMN Minimum temperature for survivaiQ) -5 2 0 Low [6,7], Workshop
A-TMX Maximum temperature for survivdlQ) 40 45 44 Low [6]

Low saturation deficit limit for
A-SDL 5 20 10 Low [6,7], Workshop
survival (mBar)

High saturation deficit limit
A-SDH 25 35 30 Low [6], Workshop
for survival (mBar)

Survival factor at the minimum temperature
A-STMN 0 0.05 0.05 No Workshop
limit for survival

Survival factor at the maximum
A-STMX 0 0.05 0.05 No Workshop
temperature limit for survival

Survival factor for saturation deficits higher
A-SSDH 0.55 0.95 0.6 Low [6], Workshop
thanSDH

A-OVTMN  Minimum temperature for ovipositiofiE) 17 24 18 Low [8], Workshop

Coefficient of fecundity (number of eggs
A-F 35 55 46.5 Low [8]
per mg wet-weight of female adults)

Development percentage threshold for
A-DPTG 0.5 0.7 0.58 Low [5,9,10], Workshop
subsequent gonotrophic cycles

Conversion coefficient from dry weight to
A-FWC 1.45 1.8 1.655 Low [8], Workshop
wet weight for female adults

* Fecundity per gonotrophic cycle is assumed to healily related to the wet weight of a female ad\émely, Fecundity =

A-FXWiemaie WhereWeemaeis the wet weight of a female adult.
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Table S2 Uncertainties in the estimates of paraméte larvae and pupae (14 parameters).

Lower Upper Default Confidence for
Parameter Description Sources
Range Range Value default value
L-S Nominal survival rate for larvae 0.9 1.0 0.99 Low [1], Workshop
P-S Nominal survival rate for pupae 0.9 1.0 0.99 Low [2], Workshop

Low temperature limit for nominal
LP-TL 10 20 15 Moderate [2], Workshop
survival of larvae and pupa¥)

High temperature limit for nominal
LP-TH 30 40 39 Low [2,3], Workshop
survival of larvae and pupa¥)

Minimum temperature for survival
LP-TMN 5 10 8 Moderate [4], Workshop
of larvae and pupaéQ)

Maximum temperature for survival
LP-TMX 40 46 44 Low Workshop
of larvae and pupaéQ)

Survival factor at the minimum
LP-STMN 0 0.05 0.05 No Workshop
temperature limit

Survival factor at the maximum
LP-STMX 0 0.05 0.05 No Workshop
temperature limit

P-SEM Emergence probability for pupae 0.75 0.9 0.83 Low [3,4,5], Workshop
Survival of larvae with lipid reserve

LP-SLIP 0.9 1 0.95 Low [6], Workshop
under fasting
Survival of larvae without lipid

LP-SNLIP 0.3 0.7 0.5 Low [1], Workshop
reserve under fasting

Larval survival probability at

L-Sp 0.9 1 0.95 Low [1], Workshop
pupation
L-Wp Minimum weight for pupation (mg) 0.1 0.19 0.1 Modteer [1]
Larval survival probability at dry
L-SDRY 0 0.05 0.05 No Workshop
container
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Table S3 Uncertainties in the estimates of paramébe egg survival and hatching (19

parameters).
Lower Upper Default Confidence for
Parameter Description Sources
Range Range Value default value
E-S Nominal survival rate for eggs 0.95 1.0 0.99 Low Workshop
Low temperature limit for
E-TL -6 5 -6 Low [1,2], Workshop
nominal survival {C)
High temperature limit for
E-TH 28 35 30 Low [3], Workshop
nominal survival C)
Minimum  temperature  for
E-TMN -14 -6 -14 Low [3,4], Workshop
survival (C)
Maximum  temperature  for
E-TMX 40 45 44 Low [3]
survival (C)
Low saturation deficit limit for
E-SDL 5 20 10 Low [3,4]
survival (mBar)
High saturation deficit limit for
E-SDH 25 35 30 Low [3]
survival (mBar)
High sun exposure limit for
E-Shign survival in dry containers 0.6 0.9 0.85 Low [3], Workshop
(proportion)
Survival factor at temperatures
E-STMN lower than minimum O 0.05 0.05 No Workshop
temperature limit for survival
Survival factor at temperature
E-STMX higher than maximum 0 0.05 0.05 No Workshop
temperature limit for survival
Survival factor for saturation
deficits higher thanSDH for
E-SSDH 0.75 0.99 0.95 Low [5], Workshop
containers  with low sun
exposure
Survival factor for sun exposure
E-SSEH higher than ESEH for dry 0.75 0.99 0.95 Low [5], Workshop
container
Low temperature limit for
E-PTL 15 25 20 Low [5], Workshop
predator activities’C)
High temperature limit for
E-PTH 25 35 30 Low [3], Workshop
predator activities’C)
Survival factor for predation a
E-SPTL 0.95 1 0.99 No [3,4], Workshop
low temperatures (E-PTL)
Survival factor for predation at
E-SPTH 0.65 0.9 0.7 Low [5], Workshop
high temperatures &-PTH)
Minimum  temperature  for
E-HTMN 14 22 22 Low [5] Workshop
hatching {C)
E-HPNF Hatching probability without O 0.25 0.2 Moderate [3,6], Workshop
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flooding

Hatching  probability — with
E-HPF 0.3 0.65 0.6 Moderate [5], Workshop
flooding
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Table S4 Uncertainties in the estimates of pararador larval weight gain (8 parameters).

Lower Upper Default Confidence for
Parameter  Description Sources
Range Range Value default value
Conversion rate of consumed Figure 11 in [1],
Fa 0.28 0.38 0.30 Moderate
food to biomass Workshop
Figure 11 in [1]
Fb Exponent of body weight 0.75 0.85 0.8 Moderate
Workshop
Fc Coefficient of food dependence 0.05 1.0 0.1 No fadil in [1]
Fd1 Coefficient of metabolic weight loss 0.005  0.032 0.016 Low Workshop
Fd2 Exponent of metabolic activity 0.59 0.73 0.667 Mate [1], Workshop
FLa Intercept for lipid prediction 0.041 0.071 0.056 o@r3* Figure 13 in [1]
FLp Slope for lipid prediction 0.255 0.303 0.279 0.012 Figure 13 in [1]

Proportion of dead larvae
FF 0.25 0.5 0.4 Low Figure 15 in [1]
to liver powder

*Note: For parameters assumed to follow a normstrithution, the “lower range” and “upper range”
refer to the 95% confidence interval and the valu¢he confidence column refers to the estimated
standard error.

References
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aegypti Forts Zool 25: 355-388.
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TableS5 Uncertainties in the estimates of parametersitigquito dispersal (7
parameters)

Lower Upper Default Confidence for

Parameter Description Range Range Value default value Sources
SD-FS Short-range dispersal probability 0.05 05 0.3 Low [1], Workshop
for female adults
) Short-range dispersal probability
SD-MS for male adults 0.05 0.5 0.3 Low [2,3], Workshop
SD-FL Long-range dispersal probability 0 0.1 0.02 Low [2,3], Workshop
for female adults
SD-ML Long-range dispersal probability 0 01 0.02 Low [3], Workshop
for male adults
) Short-range dispersal probability
SD-FES for female adults in empty house 01 09 08 Low (3], Workshop
) Short-range dispersal probability
SD-PES for male adults in empty house 1 09 08 Low (3], Workshop
SD-LD Dlstance_ for long range d|spersa|5 20 10 Low [3], Workshop
(house-distance)
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communities. Am J Trop Med Hyg 72: 209-220.

3. Magori K, Legros M, Puente ME, Focks DA, ScatYTet al. (2009) Skeeter Buster: a
stochastic, spatially-explicit modeling tool foudyingAedes aegyppopulation
replacement and population suppression stratdgies.Neglect Trop Dis 3: e508.
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Table S6 Uncertainty contributions (%) by differembdel parameters for predicted egg
population density at the commyitgwel

Parameters Descriptions Uncertainty ~ Standard
contribution _error

A-FS Nominal daily survival rate for female adults 71.75 2.42

A-MS Nominal daily survival rate for male adults 6.56 0.55

A-F Coefficient of fecundity for female adults 2.60 0.34

L-S Nominal daily survival rate for larvae 2.56 0.34

Fc Coefficient of food dependence for larvae 1.75 0.28

A-D Gonotrophic development rate 1.65 0.27

P-S Nominal daily survival rate for pupae 1.31 0.24

A-FWC Conversion coefficient from dry weight to wet welidbr 1.06 0.21

female adults

Note: Only parameters that contribute more thanp@reent to the uncertainty are shown in the taliiey explain 89.2% of
uncertainty in the predicted population density.
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Table S7 Uncertainty contributions (%) by differemddel parameters for predicted
larval population density at tlsronunity level

Parameters Descriptions Uncertainty  Standard
contribution  error

A-FS Nominal daily survival rate for female adults 39.42 1.54
E-PTH High temperature limit for predator activities ayge 9.48 0.67
Fd1 Coefficient of metabolic weight loss for larvae G.6 0.59
L-S Nominal daily survival rate for larvae 5.60 0.50
A-MS Nominal daily survival rate for male adults 4.27 0.43
E-SPTH Survival factor of predation at high temperatumseigg ~ 3.73 0.40
E-TH High temperature limit for nominal egg survival 3.0 0.37
E-PTL Low temperature limit for predator activities orgeg 2.79 0.35
E-D Embryonic development rate 1.79 0.28
P-S Nominal daily survival rate for pupae 1.38 0.24
A-D Gonotrophic development rate 1.05 0.21

Note: Only parameters that contribute more thanpareent to the uncertainty are shown in the taliley explain 80.3% of
uncertaint in the predicted population densi
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Table S8 Uncertainty contributions (%) by differembdel parameters for predicted
pupal population density at thenaaunity level

Parameters Descriptions Uncertainty ~ Standard
contribution  error
Fd1 Coefficient of metabolic weight loss for larvae 20. 1.05
L-S Nominal daily survival rate for larvae 17.37 0.95
A-FS Nominal daily survival rate for female adults 14.18 0.85
L-D Larval development rate 7.14 0.58
E-PTH High temperature limit for predator activities ayge 3.72 0.41
P-D Pupal development rate 3.23 0.38
P-S Nominal daily survival rate for pupae 3.23 0.38
Fa Conversion rate of consumed food to biomass feakr 2.91 0.36
A-MS Nominal daily survival rate for male adults 1.61 0.25
Fc Coefficient of food dependence for larvae 1.34 0.24
E-SPTH Survival factor for predation at high temperatures 1.21 0.23

Note: Only parameters that contribute more thanp@reent to the uncertainty are shown in the taliey explains 77.6% of
uncertainty in the predicted population density.

51



Table SQUncertainty contributions (%) by different modetameters for the predicted
population density of nullipardesnale adults at the community level

Parameters  Descriptions Uncertainty Standard
contribution error
A-FS Nominal daily survival rate for female adults 24.50 1.17
L-S Nominal daily survival rate for larvae 17.84 0.97
Fd1 Coefficient of metabolic weight loss for larvae a5. 0.92
L-D Larval development rate 6.06 0.53
P-S Nominal daily survival rate for pupae 5.51 0.50
E-PTH High temperature limit for predator activities aygs 2.52 0.33
A-MS Nominal daily survival rate for male adults 2.39 3D.
Fa Conversion rate of consumed food to biomass foakar 2.28 0.32
P-SEM Emergence probability for pupae 2.28 0.32
A-D Gonotrophic development rate 1.10 0.22
L-Sp Larval survival probability at pupation 1.09 0.22

Note: Only parameters that contribute more thanpe@reent to the uncertainty are shown in the taliiey explains 82% of
uncertaint in the predicted popution density
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Table S10 Uncertainty contributions (%) by differerodel parameters for the predicted
population density of parous feenadiults at the community level

Parameters Descriptions UncertaintyStandard error
contribution
A-FS Nominal daily survival rate for female adults 69.82 3.88
A-MS Nominal daily survival rate for male adults 6.16 0.60
L-S Nominal daily survival rate for larvae 3.51 0.42
Fd1 Coefficient of metabolic weight loss for larvae 2.8 0.38
L-D Larval development rate 1.48 0.26
P-S Nominal daily survival rate for pupae 1.00 0.21

Note: Only parameters that contribute more thanp@reent to the uncertainty are shown in the taliley explains 84.8% of
uncertainty in the predicted population density.
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Table S11Uncertainty contributions (%) by different moderaaeters for the predicted
population density of male adaltshe community level

Parameters Descriptions Uncertainty  Standard
contribution _error
A-MS Nominal daily survival rate for male adults 29.09 1.38
A-FS Nominal daily survival rate for female adults 18.32 1.02
Fdl Coefficient of metabolic weight loss for larvae 13.51 0.85
L-S Nominal daily survival rate for larvae 10.82 0.74
L-D Larval development rate 4.29 0.44
P-S Nominal daily survival rate for pupae 4.27 0.44
E-PTH High temperature limit for predator activities aygs 3.11 0.36
P-SEM Emergence probability for pupae 214 0.31
Fa Conversion rate of consumed food to biomass feakar 1 79 0.28
Fc Coefficient of food dependence for larvae 1.06 0.21

Note: Only parameters that contribute more thanpe@reent to the uncertainty are shown in the tafiley
explains 88.4% of uncertainty in the predicted pagon density.
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