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Abstract

As the Allee effect refers to small density or population size, it cannot be deduced whether or not the Allee mechanisms
responsible for an Allee effect at low population density or size will affect the dynamics of a population at high density or size
as well. We show using susceptible–exposed–infectious (SEI) model that such mechanisms combined with disease pathogenicity
have a detrimental impact on the dynamics of a population at high population level. In fact, the eventual outcome could be an
inevitable population crash to extinction. The tipping point marking the unanticipated population collapse at high population
level is mathematically associated with a saddle–node bifurcation. The essential mechanism of this scenario is the simultaneous
population size depression and the increase of the extinction threshold owing to disease virulence and the Allee effect. Using
numerical continuation software MatCont another saddle–node bifurcation is detected, which results in the re-emergence of two
non-trivial equilibria since highly pathogenic species cause their own extinction but not that of their host.
c⃝ 2016 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Single species models with a demographic Allee effect are widely studied by numerous authors (see the review
in [11] and the references therein). Density-dependent effects which may either be positive or negative can play
an important role in the population dynamics of species by modifying their population per capita growth rates.
Negative density-dependence acts through various forms of intraspecific competition and prevents a population from
growing without bound. On the other hand, at low population density, positive density-dependence is possible through
mate availability and cooperative strategies [9,10,15]. The Allee effect has weak and strong forms depending on the
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strengths of the positive and negative density-dependence [3]. A population exhibits a strong Allee effect if the growth
rate is negative at low population size or density. This population size or density is commonly known as the Allee effect
threshold below which species collapses to extinction. When the population growth rate is positive at low population
size or density, the Allee effect is said to be weak. For the weak Allee effect no threshold of the population size or
density exists.

In recent years, a number of authors reported that models with an Allee effect in the host demographics exhibit
complex dynamics such as periodic oscillation, multiple stable steady states, and a series of bifurcations. Such bifur-
cations include sub- and super-critical bifurcations, Bogdanov–Takens bifurcation etc. (see for instance, [7,24,31]). In
a similar note, another type of bifurcation called a backward bifurcation has been studied in various disease transmis-
sion models [14,16,20,21,26–28]. This phenomenon of backward bifurcation involves the existence of a transcritical
bifurcation and a saddle–node bifurcation. The occurrence of this phenomenon makes disease eradication more dif-
ficult as a stable endemic equilibrium also exists when the basic reproduction number is below unity. We refer the
reader to [4] for the detailed description of the backward bifurcation.

The model developed by Hilker [23] in the last decade seems to be the first account of the presence of a bifurcation
behavior similar to a backward bifurcation in a model with a demographic Allee effect. The author explored the
differences between bifurcation behaviors in epidemiological models without Allee effect that exhibit backward
bifurcations and the epidemiological model with the Allee effect. The underlying difference is that a saddle–node
bifurcation occurs in the former models when R0 < 1, whereas it exists in the model with Allee effect if R0 > 1
(for details, see [23]). It is highlighted in [23] that another saddle–node bifurcation is possible resulting in the re-
emergence of two endemic equilibria since highly pathogenic parasites cause their own extinction but not that of their
host.

It is obvious that the definition of an Allee effect does not imply any impact at higher population size or density.
However, whether or not Allee mechanisms responsible for an Allee effect at low population size or density affect the
dynamics of a population at higher population size or density need further investigation.

The main purpose of this study is to investigate the combined impact of Allee effect and infectious disease at higher
population levels and to determine which species are more vulnerable to extinction than others under such a situation.
In order to achieve that, we extend the susceptible–infectious (SI) model of Hilker [23] by adding the class of exposed
individuals. Further, we consider a more general decomposition of the per capita growth as a difference of the per
capita births and the per capita deaths which provides ample opportunity for taking into account a wider spectrum of
factors causing the Allee effect. More precisely, the impact of cooperative survival strategies, leading to a concave up
mortality function, could not be accounted for in the model in [23] where the mortality function is linear. The impact
of these factors is adequately represented in the model of this paper via a three parameter decomposition of the growth
function.

In addition to the existing similar results in the literature [23], this paper reports that some species are more prone
to decline and undergo extinction at higher population size than others, in relation to the effect of density dependence
and incubation period of the disease. This is due to adverse conditions caused by the larger population from the
Allee effect size and the increase of the effective extinction threshold owing to disease pathogenicity. The extinction
scenario is mathematically associated with a saddle–node bifurcation, in which the solution of the system is suddenly
lost by disappearance of the two endemic stationary states. As a consequence the system is rendered monostable with
extinction as an eventual outcome.

The organization of the paper is as follows: Section 2 presents the model framework. The model is analyzed for
its basic properties in Section 3. In Section 4, the existence and stability of equilibria are investigated. In Section 5,
bifurcation behavior of the model is considered.

2. Model formulation

Let N be the host total population size at time t . This population is subdivided into three disjoint compartments of
individuals that are susceptible (S(t)), exposed (latent) (E(t)) and infectious (I (t)), so that N (t) = S(t)+E(t)+ I (t).
The respective transfer rates are given in the flow diagram depicted in Fig. 1.

We assume that the force of infection is given by standard incidence (frequency-dependent transmis-
sion) and there is no vertical transmission. The dynamics obey the following system of ordinary differential
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Fig. 1. Flowchart of model (1).

equations:

d S

dt
= B(N )N − σ

SI

N
− D(N )S,

d E

dt
= σ

SI

N
− [δ + D(N )]E,

d I

dt
= δE − [µ + D(N )]I,

d N

dt
= G(N )N − µI,

(1)

where the parameter σ is the effective contact rate, δ is the rate at which exposed individuals become infected and
infected individuals suffer additional disease induced mortality at a rate µ. The density-dependent birth and death rate
functions B(N ) and D(N ), respectively, are obtained by splitting a per capita growth rate, G(N ) in which a strong
Allee effect is manifested. More precisely, we assume that G(N ) = B(N )−D(N ) satisfies the following assumptions.

(A1) G(N ) is increasing on the interval [0, Nmax] and decreasing for N > Nmax so that G has a unique maximum at
Nmax,

(A2) The equation G(N ) = 0 has two positive roots K− and K+, such that 0 < K− < Nmax < K+ < M , where M
is the upper bound of the domain of system (1).

From (A1) and (A2) we obtain that G(N ) > 0 for N ∈ (K−, K+). Therefore (denoting ′
=

d
d N )

(B1) B(N ) > D(N ) for N ∈ (K−, K+) with B(K+) = D(K+) and B ′(K+) < D′(K+),
(B2) B(N ) < D(N ) for N ∈ [0, K−) ∪ (K+, M) with B(K−) = D(K−) and B ′(K−) > D′(K−).

In order to make system (1) non-dimensional, we re-scale the variables of the model (1) by

s =
S

N
, e =

E

N
, i =

I

N
and p =

N

K+

so that s + e + i = 1 and system (1) becomes

dp

dt
= [g(p) − µi]p,

de

dt
= σ(1 − i)i − [δ + b(p) + (σ − µ)i]e,

di

dt
= δe − [b(p) + µ(1 − i)]i,

(2)

where g(p), b(p) are the dimensionless forms of G(N ) and B(N ), respectively. More precisely, we have g(p) =

G(pK+) and b(p) = B(pK+). Then the assumptions (A1) and (A2) imply that on [0, m], m =
M
K+

, g(p) has two

positive roots u =
K−

K+
∈ (0, 1) and 1 with a unique maximum between the roots.
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3. Basic properties of the model

3.1. Model (2) as a dynamical system

Theorem 1. The system of differential equations (2) defines a dynamical system on the region

Ω = {(p, e, i) ∈ R3
+ : 0 ≤ p ≤ m, 0 ≤ e, i, e + i ≤ 1}.

Proof. We need to show that all solutions of (2) initiated in Ω do not leave Ω . Then the statement of the theorem
follows from the boundedness of Ω , see [30, Theorem 2.1.5]. The region Ω is a triangular prism in the (p, e, i)-space.
It is easy to see that the line e = i = 0 and the plane p = 0 are invariant sets of system (2). Then it remains
to show that the vector field defined via the right hand side of (2) is directed inwards at the remaining part of the
boundary of Ω . Since this involves standard arguments we will show it only for one face of the prism Ω , namely
e + i = 1, e, i ≥ 0, 0 ≤ p ≤ m. The outward normal vector to this face is (0, 1, 1). Therefore it is sufficient to show
that de

dt +
di
dt < 0. We have

de

dt
+

di

dt
= (σ − µ)[1 − (e + i)]i − b(p)(e + i) = −b(p) < 0,

which completes the proof. �

3.2. Threshold quantities

There are two well known ways of a disease control for disease transmission models with varying population size
(i.e. a population with increasing or decreasing total size) due to demographic effects [6,5]. The first way requires
that the proportion i(t) of infectives goes to zero, whereas the second requirement is that the absolute number I (t)
of infectives approaches to zero. These notions of disease elimination were given and discussed in some detail in [5].
Thus, the conditions for the linear stability of disease free equilibria and for the existence and stability of endemic
proportion equilibria are required. The pertinent threshold parameters are as follows

R = R(p) =
δσ

[δ + b(p)][µ + b(p)]
, (3)

from which, we have

R0 = R(1), Ru = R(u), and R∗
e = R(0),

according as the population is at its carrying capacity (p = 1), minimum survival level (p = u) or extinction state
(p = 0), respectively.

It is important to note that the demographic functions b(p) and d(p) are equal at the carrying capacity state and
Allee threshold state. Thus, the threshold parameters R0 and Ru , are equivalently represented as

R0 =
δσ

[δ + d(1)][µ + d(1)]
, Ru =

δσ

[δ + d(u)][µ + d(u)]
. (4)

It is instructive to remark that the threshold parameters R and R0 represent the usual replacement and reproduction
numbers, respectively, that appear in disease transmission models. The distinction between the two threshold quantities
can be found in [22].

4. Equilibria and their stability

4.1. Trivial equilibria

In the absence of the disease, model (2) has the following equilibrium points:

(i) E0 = (0, 0, 0): trivial extinction state,
(ii) E1 = (u, 0, 0): Allee threshold state, and

(iii) E2 = (1, 0, 0): carrying capacity state.
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Obviously, R0 ≤ 1 if and only if δ(σ −µ)−b(1)[µ+δ+b(1)] ≤ 0 if σ −µ ≤ 0. The condition σ −µ ≤ 0 leads to
the extinction of disease i(t) of system (2). Therefore, the disease cannot invade from arbitrarily small introductions
into the host population at carrying capacity whenever R0 ≤ 1.

Theorem 2. Model (2) has three disease free equilibria: E0, E1 and E2. The equilibrium E0 is a stable node if R∗
e < 1

and is a saddle point if R∗
e > 1. The equilibrium E2 is also a stable node if R0 < 1 and is a saddle point if R0 > 1.

The Allee threshold equilibrium E1 is always a saddle point.

Proof. The Jacobian matrix, denoted by J ∗(p, 0, 0) evaluated around a disease-free equilibrium (p, 0, 0) of system
(2) is given by

Jd f (p, 0, 0) =

g′(p)p + g(p) 0 −µp
0 −[δ + b(p)] σ

0 δ −[µ + b(p)]

 .

It follows that the matrix Jd f (E0) has eigenvalues λ1 = b(0) − d(0) < 0 since p < u and the eigenvalues of the
matrix obtained by deleting the first row and column of Jd f (E0), denoted by J ∗

d f (E0). Then, the trace and determinant
of J ∗

d f (E0) are, respectively, given by

tr(J ∗

d f (E0)) = −[µ + δ + 2b(0)] < 0

and

det(J ∗

d f (E0)) = [µ + b(0)][δ + b(0)] − δσ ≷ 0,

since R∗
e < 1 if δσ ≤ [µ + b(0)][δ + b(0)] and R∗

e > 1 when δσ > [µ + b(0)][δ + b(0)]. Furthermore, the
corresponding eigenvalues of J ∗

d f (E0) are:

λ2,3 =
1
2
{−([µ + b(0)] + [δ + b(0)]) ±


([µ + b(0)] − [δ + b(0)])2 + 4δσ },

which are distinct real and of either negative sign if R∗
e < 1 or opposite sign when R∗

e > 1. Hence, the trivial
extinction state E0 is a stable node whenever R∗

e < 1 and a saddle point otherwise.
For p = 1 the first eigenvalue of Jd f (E2) is λ1 = [b′(1) − d ′(1)] < 0 by (B1). Then, by simply replacing b(0)

with b(1) in the above arguments for J ∗

d f (E0), one can verify that the carrying capacity state E2 is also a stable node if
R0 < 1 and a saddle point when R0 > 1.

Using a similar argument as in the case when p = 0 and p = 1, the first eigenvalue of Jd f (E1) is λ1 =

[b′(u) − d ′(u)]u > 0 by (B2) and the other two eigenvalues are distinct real and of either negative sign when R0 < 1
or opposite sign if R0 > 1. Therefore, the Allee threshold state is always a saddle point. �

4.2. Semi-trivial and non-trivial equilibria

The steady states of model (2) where at least one of the infected compartments of the model is non-empty are
called non-trivial equilibria. These equilibrium points can be obtained by setting the right-hand sides of system (2) to
zero and solving the resulting algebraic equations. Thus, setting the right-hand sides of model (2) to zero, we obtain

p = 0 or i =
g(p)

µ
, e =

σ(1 − i)i

δ + b(p) + (σ − µ)i
, e =

µ(1 − i) + b(p)

δ
i, (5)

thus i satisfies f (i) = 0, where

f (i) = µ(σ − µ)i2
− {(σ − µ)[µ + δ + b(p)] − µb(p)}i + δσ − [µ + b(p)][δ + b(p)]. (6)

For the non-trivial equilibria to be biologically feasible, we require that g(p) > 0 since g(p) < 0 for
p ∈ (0, u) ∪ (1, m) by (B2) and δ + b(p) + (σ − µ)i > 0. Obviously, the second condition holds when σ > µ

and so, in the following analysis we assume that σ > µ. This condition also applies to the semi-trivial equilibrium.
Conditions for the existence and biological feasibility of the semi-trivial and non-trivial equilibria are presented in the
following lemma.
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Lemma 1. Model (2) has

(i) a semi-trivial equilibrium Es = (0, es, is) if R∗
e > 1,

(ii) non-trivial equilibrium if Ru > 1 for a fixed p.

Proof. (i) Let R∗
e > 1 ⇒ (σ − µ) >

µb(0)
δ

(i.e. (σ − µ) > 0). Then it follows from (6) that f (0) > 0, and
f (1) = −{2µ+[(σ −µ)+ δ + b(0)]b(0)} < 0. Therefore, f (i) has a root i1 ∈ (0, 1), and a second root i2 > 1. This
implies from the last equation of (5) that es ≥ 0. Furthermore, setting the right-hand sides of the second and third
equations of (2) to zero, adding and simplifying gives

[σ + b(0)]es = {[σ − µ](1 − is) + µes}is . (7)

The left-hand side of (7) is positive and σ > µ. Hence, is ∈ (0, 1) and this completes the existence proof.
(ii) Following similar argument as in Case (i), we have from the last equation of (5) that e∗

≥ 0. Also for a fixed
p, say p∗, we obtain from the second and third equations of (2) that

[σ + b(p∗)]e∗
= {[σ − µ](1 − i∗) + µe∗

}i∗. (8)

Then, Ru > 1 implies that σ > µ so that i∗ ∈ (0, 1) since the left hand side of (8) is positive. Hence the proof. �

Remark 1. The steady state solutions (p∗, i∗) satisfy the following inequality (noting that f (0) > 0 and f (1) < 0)

i∗ <
[σ − µ][µ + δ + b(p∗)] − µb(p∗)

2µ[σ − µ]
.

The above results (Lemma 1) assert that the semi-trivial equilibrium exists and is biologically feasible if R∗
e > 1,

while the non-trivial equilibrium exists and is biologically feasible if Ru > 1 (since the disease cannot invade a
population at the edge of extinction owing to the strong Allee effect if Ru ≤ 1).

4.2.1. Semi-trivial equilibrium
A semi-trivial equilibrium is a steady state of the model (2) where the disease exterminates the host population.

Let Es = (ps, es, is) be such an equilibrium point of system (2). Then from Eqs. (5) and (6), we have

ps = 0, es =
µ(1 − is) + b(0)

δ
is,

and is solves

δσ (1 − is)

[µ(1 − is) + b(0)][δ + b(0) + (σ − µ)is]
= 1. (9)

Theorem 3. The semi-trivial extinction state (Es) of model (2) is locally asymptotically stable if R∗
e > 1 and unstable

otherwise.

Proof. The proof is by linearization as in the proof of Theorem 2.

4.2.2. Non-trivial equilibria
It follows from Lemma 1 that if R0 > 1, then for some fixed p model (2) has non-trivial equilibrium. Therefore,

for p∗ at endemic state, we have from (5) that

e∗
=

µ(1 − i∗) + b(p∗)

δ
i∗, i∗ =

g(p∗)

µ
, (10)

and i∗ solves

σδ(1 − i∗)

[µ(1 − i∗) + b(p∗)][δ + (σ − µ)i∗ + b(p∗)]
= 1. (11)

Note that (11) is obtained by equating the last two expressions for e in (5).
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Furthermore, the endemic equilibria of system (2) correspond to the roots of the following equation in (u, 1)

Ψ(p) = [µ + d(p)]{µ[δ + b(p)] + (σ − µ)g(p)} + σδ[g(p) − µ], (12)

with

e =
µ(1 − i) + b(p)

δ
i, i =

g(p)

µ
.

To investigate the possible number of positive interior equilibria via phase plane illustration, Eq. (12) with
g(p) = µi is rewritten in the form

i =
σδ − [µ + d(p)][δ + d(p)]

σ [µ + δ + d(p)]
. (13)

Then, we call (13) the infected nullcline or simply i-nullcline. Furthermore, we denote by Φ1(p) and Φ2(p) the host
and infected nullclines, respectively. Therefore, endemic equilibria can be found as the intersections of the i-nullcline
in (13) and the p-nullcline i = g(p)/µ. In order to demonstrate this, we consider the following per capita net growth
rate used by Hilker [24].

G(N ) = a(K+ − N )(N − K−), 0 < K− ≪ K+, (14)

where K− is the minimum viable density through which the strong Allee effect is manifested. The parameter K+ is
the carrying capacity and the coefficient a > 0 adjusts the maximum per capita growth rate.

To model the factors responsible for the Allee effects we decompose the per capita growth rate function in (14) as
G(N ) = B(N ) − D(N ). Such a decomposition was explained in detail and the demographic rate functions B(N ) and
D(N ) were represented in [32] as follows:

B(N ) = a{−(1 − α)N 2
+ [K+ + (1 − β)K−]N + K+Γ },

D(N ) = a(αN 2
− βK−N + K+K− + K+Γ ),

(15)

where the parameters α ∈ [0, 1), β and Γ ≥ 0 determine the decomposition of the growth rate function G(N )

as a difference of the birth rate B(N ) and the death rate D(N ) similar to the approach in [24]. Moreover, β and
Γ as in [24], determine the effect of density dependence and independence in both mortality and fertility rate
functions, respectively. The demographic functions (15) generalize the model in [24] by providing decomposition
of the quadratic term in G(N ) and not only of its linear part. The basic requirement that both the demographic rate
functions need to be biologically meaningful places some constraints on the values of β and Γ . One can easily see
that under the restriction

β ≤ min{1, 2
√

2α} (16)

both functions are positive on the interval [0, M] where M =
(1−β)K−+K+

1−α
. Detailed explanation of these demographic

rate functions can be found in [32].
The motivation behind the choice of the birth rate function B(N ) is the improved access to abundant resources,

e.g. via cooperative strategies. The function D(N ) takes into account Allee effect factors which decrease mortality as
population size increases. These include joint defence, lower individual exposure to predation, cooperation in raising
the young, etc. Representing D(N ) as a quadratic function (α > 0) is essential for considering these factors. Indeed,
due to the quadratic term in D(N ), at low population levels D(N ) is either increasing at a slower rate (β ≤ 0) or is
decreasing (β > 0). More precisely, the strength of the impact of cooperative survival strategies on mortality at low
population level is represented via the gradient of D in a small positive neighborhood of 0. It can be conveniently
measured by the parameter β. Indeed, the gradient of D(N ) at 0, that is D′(0) = −aβK−, linearly depends on β.
Small value of D′(0) or equivalently large value of β indicates strong impact. We can also observe that when β is
large negative the graph of the function D(N ) is close to a straight line on [0, M]. As β increases the impact becomes
more pronounced. If β > 0 then D(N ) is decreasing on [0,

βK−

2α
], thus representing a strong impact of cooperative

survival strategies. Obligate cooperative species would be in this category. If α = 0 the model is similar to the model
in [24]. In this particular case, the restriction (16) implies β ≤ 0. Hence, the mortality rate increases with a constant
gradient for all population sizes.
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Fig. 2. Phase plane illustrations with nullclines and endemic states of model (2) with (17). Parameter values used for all curves are k = 0.5, u =

0.2, µ = 0.17 and other parameters are stated in each part. (A) shows that there is no endemic state in the interval (u, 1), where the curves are drawn
with α = 0.2, β = 0.3, γ = 0.01, σ = 0.7 and δ = 0.06; (B) shows one endemic state for α = 0.35, β = 0.45, γ = 0.002, σ = 0.95 and δ = 0.1;
(C) shows two endemic states with α = 0.2, β = 0.2, γ = 0.05, σ = 0.995 and δ = 0.55; (D) shows that the two equilibria in (B) coincide to one
when γ = 0.011, δ = 0.78; (E) indicates that the two endemic states disappear by saddle–node bifurcation for γ = 0.0001, σ = 1.1 and δ = 0.78.

Death and birth are fundamental mechanisms used by populations to combat disease. This is particularly true when
there is no vertical transmission as in the case of model (1). Therefore, the birth rate and death rate functions have a
significant impact on the disease dynamics. The more general form of these functions (15) not only extends the model
in [24] by considering a wider spectrum of the Allee effect factors, but it also provides a parametrization of model (1)
which more adequately captures the epidemiological impact of the Allee effect. Indeed, we show in the sequel that
some biologically realistic asymptotic states are only possible when α > 0 and β > 0.

The dimensionless forms of the demographic functions in (15) as explained below Eq. (2) are as follows:

b(p) = k[−(1 − α)p2
+ (1 + u − βu)p + γ ],

d(p) = k(αp2
− βup + u + γ ),

(17)

where γ =
Γ
K+

≥ 0 so that both the birth and the death rate functions are positive in the interval [0, m] for

m =
M
K+

=
1+u(1−β)

1−α
. The non-trivial equilibria of model (2) with (17) are then depicted in Fig. 2.

It follows from the algebraic forms of host and infected nullclines that model (2) with (17) can have two biologically
feasible endemic equilibria as shown in Fig. 2. We denote such equilibria by E ∗

1 = (p∗

1, e∗

1, i∗1 ) and E ∗

2 = (p∗

2, e∗

2, i∗2 ),
respectively, where p∗

1 < p∗

2 .

Theorem 4. The endemic equilibrium, E ∗

2 with a large population size when it exists is locally asymptotically stable
in the interior of the domain, Ω if R0 > 1. While the endemic equilibrium, E ∗

1 with low population size, if it exists is
always unstable.

Proof. Linearizing system (2) around an endemic equilibrium E ∗, gives the following Jacobian matrix

J ∗
=

[b′(p∗) − d ′(p∗)]p∗ 0 −µp∗

−b′(p∗)e∗
−κ σ(1 − 2i∗) − (σ − µ)e∗

−b′(p∗)i∗ δ −b(p∗) − µ(1 − 2i∗)


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where κ = [δ + b(p∗) + (σ − µ)i∗]. The characteristic equation of the matrix J ∗ simplified using Eq. (11) and e∗, i∗

in (10), is

λ3
+ a2λ

2
+ a1λ + a0 = 0,

where

a2 = −[b′(p∗) − d ′(p∗)]p∗
+ (σ − µ)i∗ + µ + δ + 2d(p∗),

a1 = p∗d ′(p∗)[(σ − µ)i∗ + µ + δ + 2d(p∗)] − p∗b′(p∗)[σ i∗ + µ + δ + 2d(p∗)]

+ [(σ − µ)(µ + δ + b(p∗) − µi∗) − µb(p∗)]i∗,

a0 = p∗i∗{d ′(p∗)[(σ − µ)(µ + δ + b(p∗) − µi∗) − µb(p∗)] − b′σ(µ + δ + b(p∗))}.

It follows from the condition R0 > 1 and Remark 1 that ai > 0 for i = 0, 1, 2 if p∗
= p∗

2 . Hence, by the
Routh–Hurwitz criteria [29], E ∗

2 is locally asymptotically stable if and only if a1a2 > a0. To show that a1a2 > a0,
write ai = xiv + yiw + zi where v = −p∗

2b′(p∗

2) and w = p∗

2d ′(p∗

2) for all xi , yi , zi , v, w ≥ 0. Then the condition
for local stability is

a1a2 − a0 = (x1v + y1w + z1)(x2v + y2w + z2) − (x0v + y0w + z0),

= x1x2v
2
+ y1 y2w

2
+ (x1 y2 + y1x2)vw + (x1z2 + z1x2 − x0)v

+ (y1z2 + x1 y2 − y0)w + z1z2 − z0 > 0.

One can easily see that x1z2 > x0, y1z2 > y0 and z1z2 − z0 = z1z2 > 0 so that a1a2 − a0 > 0. Therefore, E ∗

2 is
locally asymptotically stable.

For p∗
= p∗

1 the stability condition a1a2 > a0 is not satisfied because E ∗

1 establishes an extinction basin above the
Allee threshold and, so E ∗

1 is always unstable. �

Further, rewriting Ψ(p) as defined in (12) in the form

Ψ(p) = g(p) − µ
σδ − [µ + d(p)][δ + d(p)]

σ [µ + δ + d(p)]
, (18)

we obtain

Ψ(u) = −
µ

σ [µ + d(u)][δ + d(u)][µ + δ + d(u)]
[Ru − 1],

Ψ(1) = −
µ

σ [µ + d(1)][δ + d(1)][µ + δ + d(1)]
[R0 − 1].

(19)

It follows that Ψ(u) = 0 ⇔ Ru = 1 and Ψ(1) = 0 ⇔ R0 = 1. Using these relations, we define an invasion
threshold, denoted by Ru

0 as follows.

Ru
0 =

R0

Ru
=

[µ + d(u)][δ + d(u)]

[µ + d(1)][δ + d(1)]
.

Thus, we establish the following results.

Theorem 5. Model (2) with (17) has:

(i) no non-trivial equilibrium if R0 ≤ 1 and R0 ≤ Ru
0 (i.e. Ru ≤ 1),

(ii) a unique endemic equilibrium E ∗
= (p∗, e∗, i∗) if R0 ≤ 1 < Ru . This equilibrium is always unstable, and, in

the presence of disease, is the effective eradication threshold since the extinction basin is increased beyond the
Allee threshold in such a case.

Theorem 5 shows that if R0 ≤ 1 the only stable equilibria are the disease free carrying capacity and an extinction
state E0 or Es . In case (i), the system does not have any endemic equilibria when in addition we have Ru ≤ 1. While in
case (ii), when Ru > 1, it has an unstable endemic equilibrium. This does not change the bistability of the system, but
has a significant impact on the shape of the trajectories. For example, we may have an epidemic for initial populations
in the interval (u, 1). The existence of the equilibrium E ∗ further shows explicitly that population extinction is possible
even when the initial population is above the Allee threshold u. Let us note that case (ii) of the theorem is only possible
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Fig. 3. Bifurcation diagrams for varying δ (increasing R0), showing the biologically feasible equilibria. Solid (dashed) lines represent stable
(unstable) equilibria and SN indicates a saddle–node bifurcation above which the population collapse. Parameter values used are k = 0.5, u =

0.2, µ = 0.17, α = 0.2, γ = 0.05 and σ = 1.

when α > 0 and β > 0. Indeed, using (4), the inequality R0 < Ru implies that d(u) > d(1). Then from the properties
of d(p) in (16) as a quadratic function of p it follows that α and β are positive.

5. Bifurcation analysis of the model with quadratic demographic functions

It is evident that, when an epidemiological model admits multiple non-trivial equilibria, the model usually exhibits
complex dynamical behavior such as backward bifurcation and forward hysteresis [18,19,21,25]. However, the
existence of two non-trivial and biologically feasible steady states when R0 > 1 as shown in Fig. 2(C) indicates
that model (2) with (17) will have complex dynamics.

Keeping all the parameters fixed other than the latency parameter δ, we take δ as the bifurcation parameter. It should
be noted that as bifurcation parameters, δ and R0 can be considered essentially equivalent. More precisely, R0 can be
regarded as a function of δ so that R0 is varied by varying the latency parameter δ. We denote by δc the value of δ at
which the two endemic states coincide as in Fig. 2(D) with corresponding critical threshold parameter Rc

0 = R0(δ
c).

However, in the rest of this section we will discuss the dynamical behavior of model (2) with (17) in terms of R0. In
a similar note we can take R0 as a function of either β or the transmissibility σ to obtain bifurcation results similar to
those for δ as in Fig. 6 in Appendix A and those presented in [23], respectively. The bifurcation diagrams with σ as
bifurcation parameter are not shown here as they are qualitatively equivalent to those presented by Hilker in [23] and
so, we refer the reader to the paper of Hilker [23].

Using the numerical continuation software ‘MatCont’ (a graphical MATLAB software package for the interactive
numerical study of dynamical systems, which allows one to compute curves of equilibria, limit points, Hopf points,
limit cycles, period doubling bifurcation points of limit cycles, and fold bifurcation points of limit cycles) [12], we
show in Fig. 3 how the total population p and prevalence i change with varying the threshold parameter R0. If R0 < 1,
the disease cannot invade the population at carrying capacity. If R0 > 1, however, the disease-free equilibrium E2
loses stability, resulting in the emergence of a locally stable endemic equilibrium E ∗

2 by transcritical bifurcation.
This endemic equilibrium coexists with the unstable equilibrium E ∗

1 that already arises when R0 > Ru
0 . The two

endemic equilibria coalesce and disappear by a saddle–node (SN) bifurcation at R0 = Rc
0. Hence, the population goes

extinct.
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Furthermore, the sub-threshold Rc
0 is a tipping point for an unanticipated population collapse. Therefore, the system

is rendered monostable whenever R0 > Rc
0 with trivial extinction state E0 being the only global attractor. If R0 < Rc

0,
the system is bistable with one of the attractors being either an extinction state, E0 if R∗

e < 1 or semitrivial extinction
state (Es) when R∗

e > 1. The other attractor is either E2 if R0 < 1 or E ∗

2 when R0 > 1.
One can observe from Fig. 7 in Appendix B that the tipping point Rc

0 for the abrupt population collapse increases
with increasing and decreasing values of β and δ, respectively. Therefore, the high extinction risk from high population
levels depends on the incubation period (i.e., the value of δ) and the strength of the impact of cooperative survival
strategies which is measured by the parameter β. For example, if δ = 0.3, the incubation period is approximately
3 units, then β = 0.3 for the abrupt population collapse. However, when δ = 4, the parameter β = −13 so that
the incubation period is 0.25 units which is small. This simply shows that, if disease incubation period is small and
the strength of the impact of cooperative survival strategies is less, then non-obligate cooperative species are more
vulnerable to decline and extinction at high population level. While obligate cooperators have high extinction risk
under such a situation when the incubation period is large and the impact of cooperative survival strategies is strong.
The essential mechanism behind this scenario is the simultaneous population size depression and the increase of the
extinction threshold due to disease virulence and the Allee effect.

It is worth mentioning here that all the results of model (2) with (17) hold true for its special cases. These are
the cases when the demographic function d(p) in (17) becomes linear and constant for α = 0 and α = β = 0,
respectively. For the first case, if β = −1/ku, then the demographic functions in (17) are similar to those in [23].
In this case, we have an extended version of the model of Hilker [23]. Moreover, the bifurcation results here are
similar to those in [23], showing the robustness of the outcomes of an interaction of Allee effects and infectious
disease, which makes the predictability of such systems easier. However, the novelty of the presented model is the
dynamic parameter β that makes the model more general and determines which species are more prone than others
to decline and extinction depending on the latency parameter δ. Determining the parameter β, plays a relevant role
in conservation biology for guiding management actions, as it would allow biologists to predict the vulnerability of
species to extinction even before they decline, thereby improving the species’ chances of survival.

It is to be noted that the threshold R0 can also be altered by varying the pathogenicity µ. In fact, an increase in
R0 corresponds to a decrease in µ. In such situations, another critical threshold parameter denoted by Rc2

0 such that
Rc2

0 > Rc1
0 also exists for which a second saddle–node bifurcation occurs. This scenario gives rise to two non-trivial

equilibria again after the extinction regime at R0 = Rc2
0 . The bifurcation diagrams that reveal the second saddle–node

bifurcation, which are obtained using the numerical continuation software MatCont [12] are depicted in Fig. 4.
As was reported in [1,2], the maximum degree of depression of the host population equilibrium (here leading to

extinction) is achieved by a disease with intermediate pathogenicity (i.e. moderate to large R0). When the disease
pathogenicity is too small, i.e. too high a R0, the disease has little detrimental effect on the host. In such a case, the
host persists at endemic state with large population size (R0 > Rc2

0 ). In contrast, if the level of disease pathogenicity
is too high, i.e. too small a R0, the increased mortality of infected individuals will either prevents effective disease
transmission (1 < R0 < Rc1

0 ) or even leads to the deletion of infections from the host population (R0 < 1).
It is observed that the threshold quantities of the model define a nonlinear relationship between δ and µ and a linear

relationship between σ and µ as in [23], while the saddle–node bifurcation conditions define a nonlinear relationship.
Thus, the summary of the model behavior in the two-parameter space (µ, σ ) is depicted in Fig. 5. Therefore, the
dynamical consequences of model (2) with (17) can be characterized in relation to disease-related parameters σ

and µ. As highlighted in [23], fixing the pathogenicity µ corresponding to a saddle–node bifurcation scenario and
traversing vertically through Fig. 4 by altering σ reveals that the saddle–node bifurcation curve can be crossed only
once. Similarly, if transmissibility σ (noting the critical value of σ at the turning point of the saddle–node bifurcation
curve) is fixed and Fig. 4 is traversed horizontally by varying µ, the saddle–node bifurcation curve can be crossed
twice (revealing the existence of two saddle–node bifurcations). The mathematical implication of these numerical
observations is that both nullclines depend on µ, but only one nullcline depends on σ .

6. Discussion and conclusions

The Allee effect refers to a reduction of individuals fitness, which leads to a decreasing population per capita
growth rate in low densities or small population sizes. However, there is increasing evidence for the impact of an
Allee effect at high densities or large population sizes [13,23]. The model considered in [13] suggests that a small
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Fig. 4. Bifurcation diagrams that reveal a second saddle–node bifurcation by changing disease pathogenicity µ (decreasing R0). The locations
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bifurcation. Solid (dashed) lines represent stable (unstable) equilibria and SN indicates a saddle–node bifurcation above which the population
collapse. While SN2 shows a second saddle–node bifurcation for the re-emergence of two endemic equilibria. Parameter values used are
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Fig. 5. Regions of model behavior in the two-parameter space (µ, σ ) where σ is the transmission parameter and µ is the disease-induced death rate.
In each region, stable equilibria are indicated. The regions marked I through I V are bistable, whereas the region V is monostable with eventual
host extinction. Region I V can be endemic, while regions I and I I can be disease-free. Host extinction is possible in all regions. The line enclosing
region V is a saddle–node bifurcation curve obtained using MatCont, while the dashed and dash-dotted lines are transcritical bifurcation curves.
Solid line between the dashed and dash-dotted lines marks the emergence of the unstable non-trivial equilibrium E ∗. Parameter values used are
k = 0.5, u = 0.2, α = 0.2, β = −1, γ = 0.05 and δ = 0.55.

perturbation from the disease-free equilibrium can lead to a catastrophic extinction of the host population from high
density in the presence of a strong Allee effect. On the other hand, the model of Hilker [23] suggests that an extinction
occurs abruptly from a level of large population size due to a saddle–node bifurcation. In a similar note, the model
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presented here shows that the synergistic effects of infectious disease and the strong Allee effect could lead to an
inevitable crash of the host. Additionally, the bifurcation results reveal that the abrupt population collapse from a level
of high population size varies from one species to another in relation to the strength of the impact of cooperative
survival strategies on mortality rate function D(N ), which can be conveniently measured by the parameter β. In
fact, the gradient of D(N ) at zero linearly depends on β and so, small value of the gradient or equivalently large
value of β indicates strong impact. If β > 0 then D(N ) is decreasing, representing a strong impact of cooperative
survival strategies. Hence, obligate cooperative species would be in this category. For β ≤ 0, however, D(N ) increases
slowly reflecting a less impact of such strategies. Non obligate cooperative species would belong to this category. This
follows from the fact that some species are more vulnerable to extinction than others [8]. Therefore, the parameter
β makes the proposed model more general and biologically relevant. More precisely, the demographic rate functions
of the model in [23] are special cases of those considered in this paper for β = −1/ku when the parameter α = 0.
Identifying which species are more vulnerable than others to population decline and extinction plays a relevant role in
conservation biology for guiding management actions. Simply because such an information would allow biologists to
improve the species’ chances of survival.

The Allee effect and infectious disease are some of the extinction drivers that recently received considerable
attention in the extinction research. Indeed, their joint interplay has long been recognized to drive host population
to extinction. In particular, their synergistic effects define a tipping point at which the population crashes abruptly.
The tipping point marking the unexpected population collapse is mathematically associated with a saddle–node
bifurcation. When the two endemic equilibria E ∗

1 and E ∗

2 coalesce and disappear, there is no endemic attractor left
and extinction is an eventual outcome. The endemic state E ∗

2 emerges from the carrying capacity state if R0 > 1,
which has a larger population size than E ∗

1 . While the equilibrium E ∗

1 bifurcates from the Allee threshold state on
the disease-free boundary into the interior of the domain if Ru > 1 or equivalently R0 > Ru

0 . The emergence
of the unstable equilibrium E ∗

1 establishes the extinction basin above the Allee threshold and it is essential for the
saddle–node bifurcation to occur.

From biological point of view, the underlying mechanisms of the spontaneous population collapse are: the
regulatory potential of the disease, which leads to a depression of the host population size p∗

2 at endemic equilibrium
and additional disease induced mortality that increases the likelihood of extinction (i.e. the effective extinction
threshold becomes larger). Therefore, the infection attacks the host from two ends of the population size spectrum,
thereby reducing the range of possible endemic persistence. Hence extinction takes place when the range of viable
population sizes could not exist. Finally, the endemic population equilibrium is absorbed by the extinction basin,
which is established by the disease.

It is well known that highly pathogenic species cause their own extinction but not that of their host [1,2]. As
a consequence, a second saddle–node bifurcation exists when varying disease pathogenicity. Unlike in the case of
forward hysteresis [17,19], the two saddle–node bifurcations are separate from each other when they exist. In this
case, control measures by impacting the basic reproduction number can be either beneficial or disadvantageous for
the host. On one hand, increasing R0 can be beneficial if it is altered above Rc2

0 , because it facilitates host endemic
persistence rather extinction. On the other hand, decreasing R0 can be detrimental if it is reduced below Rc2

0 as it can
drive host population to extinction.

In conclusion, the main differences between the model presented here and that introduced by Hilker in [23] are the
inclusion of the exposed class and incorporating the more general quadratic rate functions which effectively capture
species’ susceptibility variation due to the Allee effects.
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Appendix A. Bifurcation diagrams for varying the parameter β
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Appendix B. The limit point curve in (β, δ)-space
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