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A mitotic oscillator with one slowly increasing variable (z L of the order of hours) and one rapidly increasing variable (r R of 
the order of minutes) modulated by a timer (ultradian clock) gives an auto-oscillating solution: cells divide when this relaxation 
oscillator reaches a critical threshold to initiate a rapid phase of the limit cycle. Increasing values of the velocity constant in 
the slow equation give qu~iperiodic, chaotic and periodic solutions. Thus dispersed and quantized cell cycle times are conse- 
quences of a chaotic trajectory and have a purely deterministic basis. This model of the dispersion of cell cycle times contrasts 
with many previous ones in which cell cycle variability is a consequence of stochastic properties inherent in a sequence of many 
thousands of reactions or the random nature of a key transition step. 
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1. Introduction 

In rapidly growing populations of lower 
eukaryotic organisms or cultured metazoan cells 
the progress of cells i~:om S phase to mitosis and 
then to S phase again can occur repeatedly 
(Lloyd et al., 1982a). This cycle of processes and 
events has often been discussed as if it is a clock 
(Edmunds, 1988), or more correctly, as if it is 
partially controlled by a clock (Nurse, 1990). 
Several limit-cycle models for the mitotic 
oscillator have been proposed (Sel'kov, 1970; 
Gilbert, 1974, 1981; Kauffman and Wille, 1975). 
A special characteristic of all timekeepers 
(which distinguishes them from all those 
oscillating systems not contributing to biological 
clock function) is their temperature-compensat- 
ed outputs and yet the cell cycle is as 
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temperature-dependent as most other typical 
biochemical reactions and biological processes. 
Neither does the cell division cycle show the 
precision typical of other clock-controlled 
rhythms (Pittendrigh and Bruce, 1957). Thus, 
individual organisms have widely differing cycle 
times; the coefficient of variation sometimes 
reaches 15-2507o (Brooks, 1981). In the mam- 
malian cell growing rapidly in culture under op- 
timum conditions, the interval between the start 
of S phase and mitosis varies only a little, and 
almost all the dispersion of cell cycle times 
arises in GI (Prescott, 1976). There have been 
several different suggestions that the 
timekeeper may be a biochemical oscillator. For 
limit cycle models, cell cycle variability is 
modelled by inclusion of a 'noise term' to take 
account of the inherent variability of a process 
that represents the sum total of several 
thousands of steps (Gilbert, 1981; Mustafin and 
Volkov, 1977). Alternatively it has been sug- 
gested that a random event characterizes the 
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transition to S (the Transition Probability 
Model) (Burns and T~mnock, 1970; Smith and 
Martin, 1973). In this paper we show that it is 
not essential to invoke stochastic events to ex- 
plain the variability of cell cycle times: a relaxa- 
tion oscillator interacting with ultradian clock 
pulses (Lloyd and Kippert, 1987) can show 
chaotic behaviour. This provides a deterministic 
mechanism which may have advantages over a 
noisy one for evolutionary survival (Conrad, 
1986). Extensive evidence for the existence of 
an ultradian clock with species specific period (of 
the order of an hour) comes from observations 
made on several different lower eukaryotes 
(yeasts and protozoa, Lloyd, 1992). 

2. The Mode l  

The model is based on earlier proposals of 
Chernavskii et al. (1982) and Lloyd and Volkov 
(1990, 1991) in which a mitotic or cell division 
cycle oscillator with one slow variable (rL of the 
order of hours) and one fast variable (rR of the 
order of minutes) may be described by the 
following system of equations: 

dL 
1" L -- y - 2LR - DL 

dt 

dR _ ~C + L R  - R  ~ mR (1) 
rR dt (R + 5) 

where L and R are concentration terms, rL and 
rR are their characteristic times and 7, D, 3£, 
and 5 are velocity constants. Both the slow and 
fast components oscillate with the same period 
but with very distinctive waveforms. The non- 
symmetrical time dependence of the slow 
variable becomes more pronounced as the 
system approaches the bifurcation point (i.e. the 
non-proliferating state). As in the Sel'kov- 
Gilbert hypothesis, these coupled differential 
equations reflect the operation of a control 
system, as the rates of change in the levels of 
the two variables, L and R, are each dependent 
on the levels of the other component (Sel'kov, 
1970; Gilbert, 1974). 
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A variety of biochemical identities have been 
proposed for appropriately paired state 
variables; current ideas of cell cycle control 
focus on p34-cyclin oscillations (Hyver and Le 
Guyaders 1990). Sel'kov (1970) proposed a redox 
(thiol-disulphide) dependent limit cycle, whereas 
Chernavskii et al. (1977) favoured a lipid depen- 
dent mechanism. Modulation by an output of the 
endogenous temperature-compensated ultra- 
dian clock (Lloyd et al., 1982a) (period TUR) is 
represented as a first approximation in the 
simplest form possible (i.e. as having a single 
defined frequency). The sinusoid output of this 
clock is simulated by the introduction of a har- 
monic term as a forcing function into the slow 
equation, which then becomes:- 

dL 
- 71 - 2LR - DL + C sin fit (2) 

rL dt 

where 

2 7  
T ~  - f ,~ T ~  cycle 

The auto-oscillating solution considers that cells 
divide when L(t) reaches a threshold to initiate 
a rapid phase of the limit cycle. Here, we con- 
sider only a fixed-threshold model; in a more 
complex scenario this threshold (and also other 
characteristics of the model) could have 
temperature dependencies. 

3. Computer  S i m u l a t i o n s  

The dynamic structure of the equations was 
studied numerically. Whereas previously we 
have also included a noise term to imitate the 
dispersion of generation times shown by real 
systems, solutions of between 3.00 and 4.50 in 
equation [2] show quasiperiodicity (circular or 
toroidal next-amplitude maxima plots) (Fig. 1) 
without any such stochastic term (Lma~ (n) is the 
value attained with L at its n'th maximum). 

The time-dependent behaviour of the cellular 
concentrations of L and R (Fig. 2), show that dif- 
ferent temporal characteristics of cell division 
behaviour can be obtained by setting the critical 
threshold at different levels; presumably it is 
only higher concentration maxima that could be 
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Fig.  2. The solution of the  model described in equations (1) 
and (2) with 17 = 4.95, D ffi 0.4, ~C ffi 0.15, 7 = 1.5, $ ffi 0.15, 
C - 0.45, fl ffi 5.0, r L = 1 and  rR ffi 0.1. Time dependence 
of the  slow (L) and fast  (R) variables, (a) and  (b), respec- 
tively. 

used in the real system to trigger mitosis or cell 
division. 

Further exploration of higher values for ~ (e.g. 
= 4.95) indicates chaotic dynamics as il- 

lustrated by the phase portrait of R vs. L in Fig. 
3a and the stroboscopic plots of Figs. 3b and 3c. 
The latter represent plots of R vs. L at time in- 

tervals of TUR ('time one maps'). These plots 
would show the presence of a rhythm with 
period TUR or multiples or fractions of this 
period, if present, as a finite set of points. We 
note that the time-one map in Fig. 3a does not 
exhibit this property and its dispersion indicates 
that the period is not a multiple of T ~ .  Figure 
3b has an intricate structure which can be 
revealed by magnification of a small subsection 
of the map (Fig. 3c). Magnifications beyond that 
in Fig. 3c did not show additional structure. 
Thus we may conclude that either the phase por- 
trait in Fig. 3a corresponds to (i) a complex torus 
with an integer dimension or to (ii) a chaotic at- 
tractor with an almost integer fractal dimen- 
sion. Calculation of the correlation dimension, 
D2, by the method of Grassberger and Procac- 
cia (1983) gave a value of 1.95, thus confirming 
an almost integer dimension. We also used the 
method of Wolf et al. (1985) to compute the spec- 
trum of Lyapunov exponents. This method 
assumes that none of the differential equations 
contain time explicitly (i.e. are autonomous). To 
eliminate t on the right-hand side of equation 
[2], we replaced the sine term with the term: 

C sin X 

and added an additional differential equation: 

dX 
- n ( 3 )  

dt 

This gives a set of differential equations 
equivalent to [1] and [2]. 

The Lyapunov exponents are in bit per time 
unit: hi ffi 0.21, ~,2 = 0 and ~3 = -6.32. From 
the Lyapunov exponents we calculate the 
Lyapunov dimension D L = 2.03 (Farmer et al., 
1 9 8 3 ) .  D L is a much better approximation to the 
fractal dimension than D2. A positive ~,1 and a 
non-integer DL confirm that the dynamics are 
chaotic. The bifurcation diagram (Lmax vs. ~, 
Fig. 3d) shows that the route to chaos for in- 
creasing ~ is via a quasiperiodic regime. The 
chaotic region begins at ~ = 4.65 and gives way 
to a simple periodic oscillation at ~ ffi 5.0. 
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Fig. 3. (a) Phase portrait of the system described in equations (1) and (2) for parameter values shown in Fig. 2. (b) Time-one 
map of the simulation in I(a): 50 000 corresponding values of R and L are plotted at intervals of TUu = 260. (e) Magnification 
of the boxed region in (b). (d) Bifurcation diagram for n varying from 2.5 to 5.2. For each value of 7 100 maxima of L are plotted 
following a transient of IO0 time units. Other parameters as in (a). 

A relative frequency plot of cell cycle times for periodic regime a dispersed unimodal distribu- 
rl = 4.95 shows a trimodal distribution (Fig. 4) tion of cell cycle times will result). Quantized cell 
with negatively skewed dispersions. The bifur- 
cation diagram (Fig. 3d) indicates that this is 

cycle times have been predicted from experi- 

just one possible outcome: other values for r) will 
ments with synchronous cultures of protozoa 

give different consequences (e.g. in the quasi- 
(Lloyd et al., 1982a) and shown for mammalian 
cells (Klevecz, 1976); precise measurements 
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made on interdivisi,on times of individual 
Paramecium tetraul.elia demonstrate this 
phenomenon most clearly (Lloyd and Kippert, 
1987). Circadian clock control of the cell cycle in 
other organisms often reveals itself as 24-h 
quantal increments in division times (Sweeney, 
1982; Edmunds, 1988). 

4. Conclusions 

In the model o)nsidered here, chaotic 
dynamics can be a consequence of the interac- 
tion of two oscillators (the action of the ultradian 
clock on the cell cycle oscillator). In the chaotic 
mode (i.e. for a special set of parameter values) 
this gives rise to dis]~rsion of cell cycle times 
and multimodality (quantized cell cycle times) 
(Lloyd et al., 1982b; Lloyd and Kippert, 1987). It 
differs from the emrlier model of Lloyd and 
Volkov (1990, 1991) in that complex dynamic 
structure is generated in the absence of external 
noise. The system described here has analogies 
with the periodically-perturbed Hodgkin-Huxley 
oscillator (Hodgkin alad Huxley, 1952; Fitzhugh, 
1961; Rose and Hindmarsh, 1985; Aihard and 
Matsumoto, 1987). But the organism is an 
ensemble of many potentially oscillating 
systems operating on a broad range of 
timescales (Lloyd, 1987). In a multi-oscillator 
system of weakly-coupled units it would be sur- 
prising not to be able to find that chaotic 
regimes and chaotic .,systems are generally more 
robust to perturbations than their periodic 
counterparts (Schaffer et al., 1986). The ex- 
ploitation of the benefits that accrue to an 
organism able to utilise these dynamic 
characteristics ensure the evolutionary survival 
of any useful mechal~sm. Although the benefits 
of dispersed and qu~mtized cell cycle times have 
not been investigated, we conjecture that the 
generation of diver.~,ity and the maintenance of 
the functional independence of the individual 
(e.g. by the avoidance of entrainment) might 
enhance survival of the population. Too narrow 
an age structure could be a severe limitation 
(Conrad, 1986). Some systems may achieve this 
by a chaotic mech~mism, whereas others may 
use random fluctuations or a superposition of 
noise on chaos. 

In the Transition Probability Model a 

stochastic event is the key regulatory step that 
controls cell proliferation rates. In the present 
model, variability of cell cycle times is a conse- 
quence of a chaotic trajectory with a purely 
deterministic basis. Although we have assumed 
throughout that the critical threshold is achiev- 
ed at cell division, similar arguments hold for 
the control of triggering of the S phase or of 
mitosis, as do the salient features of the model. 
We do not imply that the consequences of these 
alternatives are equivalent; indeed that mitosis 
and division can be dissociated (Baserga, 1985) 
clearly indicates that this is not so. 

The existence of a cell cycle oscillator with a 
strange attractor has previously been con- 
sidered (Engleberg, 1968; Mackey, 1985; 
Grasman, 1990) but possible consequences were 
not investigated numerically. Further develop- 
ments of the model should include consideration 
of the relatedness of sister cell cycle times and 
effects of period and waveform of the forcing 
function on distribution of cell cycle times. 
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