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Stochasticity and heterogeneity
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Demographic stochasticity and heterogeneity in transmission of infection can affect the
dynamics of host—vector disease systems in important ways. We discuss the use of analytic
techniques to assess the impact of demographic stochasticity in both well-mixed and
heterogeneous settings. Disease invasion probabilities can be calculated using branching
process methodology. We review the use of this theory for host—vector infections and examine
its use in the face of heterogeneous transmission. Situations in which there is a marked
asymmetry in transmission between host and vector are seen to be of particular interest. For
endemic infections, stochasticity leads to variation in prevalence about the endemic level. If
these fluctuations are large enough, disease extinction can occur via endemic fade-out. We
develop moment equations that quantify the impact of stochasticity, providing insight into
the likelihood of stochastic extinction. We frame our discussion in terms of the simple Ross
malaria model, but discuss extensions to more realistic host—vector models.
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1. INTRODUCTION

Many of the infections that have the greatest impact on
human health, either in terms of mortality or morbidity,
are vector borne. Mosquitoes are perhaps the best known
disease vectors, with various species playing a role in the
transmission of infections such as malaria, yellow fever,
dengue fever and West Nile virus. Mathematical
modelling has a long history of use in these settings,
particularly in the case of malaria, with the Ross model
(Ross 1910, 1911), later extended by Macdonald (1952),
providing a simplified description of the transmission
dynamics of malaria. This modelling framework has a
broader applicability to other mosquito-borne infections
and indeed to other host—vector infections.

Despite its simplicity, the Ross model has provided
many insights into the spread of host—vector infections.
Most notably, use of the model identified a threshold
condition for the invasion and persistence of infection.
These studies lead to the identification of perhaps the
most important concept in mathematical epidemiology,
the basic reproductive number of an infection. This
quantity, written as R, gives the average number of
secondary infections that arise when a single infectious
individual is introduced into an otherwise entirely
susceptible population. If this basic reproductive
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number is greater than 1, then introduction of infection
can lead to a disease outbreak.

Following the typical path of model development
from a simple starting point through increasingly more
complex forms, numerous refinements of the Ross
model have been developed. These include models
that include more realistic depictions of the trans-
mission cycle of the infection and the demographics of
both vector and host populations.

Heterogeneity in the transmission of vector-borne
diseases has been well documented, both in observa-
tional and modelling studies. A striking result is that,
for many infections, 20% of individuals are responsible
for 80% of transmission—the so-called 20-80 rule
(Woolhouse et al. 1997). As a result, models that
ignore heterogeneity may be seriously misleading,
importantly giving rise to inaccurate estimates of the
likely success of disease control strategies.

Many of the models that have been employed in
vector-borne settings have been deterministic, ignoring
the possible importance of random effects. Some
studies, however, have highlighted the effects that
stochasticity can have on transmission (e.g. Bartlett
1964; Griffiths 1972; Dye & Hasibeder 1986). Random
effects can exert a major impact whenever the
prevalence of infection—in either the host or vector
population, or both—is low. If there are few infectives,
then it is possible for all of them to recover or die before
passing on infection. Stochastic effects can be highly
significant during the period immediately after the
introduction of infection into a population: disease
invasion is often highly stochastic. Random effects can
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also lead to extinction in endemic settings (Bartlett
1956). Whereas deterministic models often predict that
the prevalence of infection will approach a stable
equilibrium, random effects lead to the system being
buffeted about this equilibrium. Stochasticity can lead
to large departures from the equilibrium, potentially
allowing the number of infectives to fall to low levels.
Stochastic extinction, known as disease fade-out, can
occur during such excursions.

In thisstudy, we shall examine the impact of stochastic
effects on the invasion and persistence of a vector-borne
infection, both in well-mixed and in heterogeneous
settings. This paper is organized as follows: following a
brief review of the deterministic Ross model and its
properties, we shall describe the corresponding stochastic
formulation. We then examine the probability that
disease invasion will occur following a given introduction.
The impact of demographic stochasticity in the endemic
setting is then discussed. After reviewing the way by
which heterogeneity in transmission can be incorporated
into the Ross framework, we assess the impact of
stochasticity in heterogeneous settings.

2. THE DETERMINISTIC ROSS MODEL

The Ross model (Ross 1910, 1911) assumes that each
host is, at any point in time, either susceptible to the
infection or has the infection, in which case they are
infectious. The host population size is assumed to be
constant and its size is denoted by H. The number of
hosts that are infectious is written as Y, which means
that there are H— Y susceptibles. The fractions of the
host population that are infectious and susceptible are
given by Y/H and (H—Y)/H, respectively.

In a similar way, vectors are assumed to be either
susceptible or infectious. We write the size of the vector
population as V and the number of infectious vectors
as I. It is assumed that the size of the vector population
is constant: the rate at which vectors die balances the
rate at which they are born. Newly born vectors are
taken to be susceptible: it is assumed that no vertical
transmission occurs.

A susceptible host can acquire infection by being
bitten by an infected vector. A key assumption of the
model is that the rate at which a given vector bites hosts is
independent of the number of hosts that are present. For
a mosquito-borne infection, this corresponds to assuming
that each mosquito needs only a certain number of blood
meals per unit time and there are sufficiently many hosts
present for each mosquito to always be able to find a meal.
Assuming that vectors do not have to compete for hosts
on which to bite, the overall rate at which bites occur is
proportional to the number of vectors but independent of
the number of hosts. This asymmetry between hosts and
vectors is a central feature of the model.

A single vector is taken to bite hosts at a rate of k
bites per unit time. The probability of transmission
occurring if an infectious vector bites a susceptible host
once is written as p. This is the per-bite vector to host
transmission probability. We denote the product kp by
a. Once infected, a host remains infectious for an
average of 1/£ time units, after which they recover and
are again susceptible.
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The probability of transmission occurring if a suscep-
tible vector bites an infectious host once is written as g,
the per-bite host to vector transmission probability. We
denote the product kg by B. Once infected, a vector
remains infectious until it dies and it is assumed that
infectious vectors live for an average of 1/6 time units.

With the above description, together with the
assumptions of a constant recovery rate for hosts and a
constant death rate for infective vectors, the model can be
written as the following pair of differential equations:

Y = aI(H;[Y> —£Y,

I zﬁ(V—I)%—(Sl.

(2.1)
(2.2)

2.1. The basic reproductive number, R,

The basic reproductive number gives the average
number of secondary infections that would result from
the introduction of a single infective individual into an
entirely susceptible population. The two-step life cycle
of the infection means that calculation of R, involves
looking at the two-step process: host to vector, then
vector back to host (or vice versa).

Let R(g/ T be the average number of hosts directly
infected by the introduction of a single infective vector
into an entirely susceptible host population. Similarly,
denote the average number of vectors that become
directly infected upon the introduction of a single
infectious host into an entirely susceptible vector
population by Réf V. When the host population is entirely
susceptible (Y=0), the transmission rate from the vector
population to the host population is «l. Thus, the
transmission rate per infective vector is «. Infective
vectorslive for an average of 1 /6 time units, and so asingle
infective vector will give rise to an average of R}" = «/6
infective hosts. Employing a similar argument for an
entirely susceptible vector population (I=0), we obtain
Ry =(BV/H) X (1/§)=BV/HE.

Over the entire transmission cycle, one infective host
gives rise to an average of
_ BaV
 E0H
secondary infections in the host population. The same
result is obtained if one looks at the average number of
secondary infections in the vector population that
results from the introduction of an infective vector.

Note that R is proportional to the size of the vector
population but inversely proportional to the size of the
host population. This results from the asymmetry in
the dependence of the vector’s biting rate on the sizes of
the host and vector populations. Writing the term B« as
Kpq, we obtain the well-known result that R, depends
on the square of the biting rate, since the transmission
cycle involves two biting events.

For the deterministic Ross model, Ry=1 defines a
threshold condition for both invasion and persistence of
infection. If the basic reproductive number is greater
than 1, then the number of infectives will initially
increase following the introduction of infection: the
infection-free state is unstable. In the long term, the

Ry = RIVRYY (2.3)
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Table 1. Events of the Ross model, their rates and probabilities of occurrence in a time interval of length dt.

event transition rate at which event occurs probability of transition in time interval [¢, ¢+ d{]
infection of host Y- Y+1 ol((H-Y)/H) al((H—-Y)/H)dt

infection of vector I—-I1+1 B(V—I)(Y/H) B(V—I)(Y/H)dt

recovery of host Y—>YV-1 £Y Eyde

death of vector I—-1-1 ol oldt

system will approach a stable endemic equilibrium, at
which the numbers of infective vectors and hosts are
positive. If the basic reproductive number is less than 1,
then the infection will die out in the long term.

3. DEMOGRAPHIC STOCHASTICITY
IN THE ROSS MODEL

Rather than considering the average rates at which
individuals move between classes, models with demo-
graphic stochasticity consider the discrete movements
of individuals between classes (Bartlett 1956, 1960).
The numbers in each class are no longer treated as
continuously varying quantities; instead, the numbers
in the stochastic model are taken to be integers. The
rates that appear in the deterministic model are recast
in terms of probabilities of the occurrence of each event
(infection of host or vector, recovery and death) in a
short time interval (table 1).

An important possibility that this description raises
is that the last infective can recover before infection is
transmitted: the prevalence of infection can decrease to
zero, following which the infection can only reoccur if it
is reintroduced from outside the population. In
contrast, many deterministic models have the weakness
that infection can fall to very low levels—well below the
point at which there is only one infective individual—
only to rise up later. Thus, under some circumstances,
persistence of infection in deterministic models can be
an artefact of their allowing fractional numbers of
infective ‘individuals’ (Mollison 1991).

3.1. Invasion probabilities

In the stochastic model, invasion of an infection into a
naive population is not guaranteed by having R,
greater than 1: stochastic extinction can occur during
the period immediately following introduction, when
there are few infectives. Rather than the major
outbreak that would be expected based on the
behaviour of the deterministic model, only a minor
outbreak might occur. During this early period after
introduction, little depletion of susceptibles will have
occurred and so invasion probabilities can be derived
using the linear model that arises by assuming that the
populations are entirely susceptible (Bartlett 1964;
Griffiths 1972; Ball 1983). In the host—vector setting,
these probabilities were first calculated by Bartlett
(1964), using branching process theory (Athreya & Ney
1972; see also Ball 1983). Although the branching
process approach is commonly used, it should be
pointed out that it is not the only way to obtain these
probabilities: Griffiths (1972), for example, used the
backwards Kolmogorov equations.

J. R. Soc. Interface (2007)

Branching process theory tells us that the likelihood of
invasion depends not only on the average number of
secondary infections (i.e. Ry), but also on their distri-
bution about this average. The Ross model assumes a
constant rate of recovery for the hosts and a constant
death rate for infected vectors, leading to the duration of
infection, for both hosts and vectors, being exponentially
distributed. If secondary infections arise independently
and at a constant rate over these infectious periods, the
distributions of secondary infections both follow geo-
metric distributions, with means R{" and R}" respect-
ively (e.g. Diekmann & Heesterbeek 2000). We remark
that another description of infectious periods is some-
times deployed, namely that they are of fixed durations
(for hosts and vectors, separately): this situation is
discussed in the electronic supplementary material.

Extinction in the linear model is most likely to occur
early in the process, so this corresponds to the
occurrence of a minor outbreak in the nonlinear model,
whereas non-extinction in the linear model corresponds
to a major outbreak in the nonlinear model. The main
result of branching process theory (Athreya & Ney 1972)
can be used to calculate the probability of extinction in
the linear model, following the introduction of a single
infectious individual. This extinction probability, which
we write as s, is found by calculating the smallest non-
negative root of the equation

G(s) = s.

Here G(s) is the probability generating function of the
distribution of secondary infections. The generating
function is a mathematical way of summarizing the
distribution of a discrete random variable, X, that can
take non-negative integer values (e.g. Grimmett &
Stirzaker 1992) and is given by the formula

(3.1)

0

G(s) =Y _ s'P(X = k).

k=0

Here P(X=F) stands for the probability that X takes the
value k. It is straightforward to show that the generating
function for a geometric distribution is given by

_ 1
1+u(l—s)’

(3.2)

G(s) (3.3)
where u is the average value. Once the extinction
probability, s, is known, the probability of a major
outbreak can be calculated as 1 —s.

If the average number of secondary infections is
greater than 1, then the relevant solution of (3.1) is
less than 1, otherwise the solution will be equal to 1
(Athreya & Ney 1972). In the setting of a directly
transmitted infection, this leads to the well-known result
that the probability of a major outbreak, following the
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introduction of a single infective, i.e. the invasion
probability, is equal to 1—1/Ry when R, is greater
than 1 (Bartlett 1960; Diekmann & Heesterbeek 2000).
When there is more than one type of individual, as in
a host—vector model, multi-type branching process
theory can be used to calculate extinction and invasion
probabilities (Athreya & Ney 1972; see Becker &
Marschner (1990) for a discussion in the context of a
directly transmitted infection). When there are two
types of individuals, which we label as 1 and 2, their
distributions of secondary infections of each type can be
summarized by the two generating functions,

Gi(s1, 82) = ZSTIS'SQP(Xn = ky, Xpp = ky).
kit

(3.4)

Here, iis equal to 1 or 2 and Xj; is the random variable
giving the number of secondary infections of type jthat
arise from an individual of type .

Extinction probabilities can be calculated by solving
the pair of equations, Gy(si, s2)=s; and Gs(sy, $3) = So.
Then s; gives the probability of extinction starting from a
single individual of type 1, and s, gives the corresponding
probability for type 2. (As before, the probability of a
major outbreak can be calculated as 1 minus the
appropriate extinction probability.) The pair (s, s2)=
(1, 1) is always a solution. If Ry <1 it is the only solution,
whereas if Ry>1 there is another solution with both
s1 and s being less than 1 (Athreya & Ney 1972). In other
words, when R is less than or equal to 1, only minor
outbreaks can occur, whereas when Ry is greater than 1,
there is a positive probability of a major outbreak.

In the Ross model, for which we label the two types H
and V, infective hosts only directly give rise to
secondary infections in the vector population. Thus,
we have that P(Xgr=7, Xgy=Fk) is equal to P(Xgy=k)
when j=0, and is zero otherwise. Consequently, the
generating function Gg(sy, sy) is a function of sy alone,

1
14+ REV(1—sy)’

Gu(sy,sv) = (3.5)

By the same argument, the generating function
Gv(sg, sv) has the form

1
14+ RV (1—sy)’

Gy (s, sy) = (3.6)

Solving for the extinction probabilities gives the two
equations,

Gu(Gy(sn)) = su (3.7)

and
Gy(Gr(sy)) = sy (3.8)

We remark that the form of (3.7) and (3.8) should not
be surprising, since we have a two-step life cycle from
one type to the other and then back to the original, and
it is well known that the generating function for such a
two-step life cycle is the composition of the two single-
step generating functions (e.g. Grimmett & Stirzaker
1992). An important observation is that the two
extinction probabilities are not, in general, equal
because the composition of functions typically depends
on the order of composition.
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Calculation of the extinction probability following the
introduction of a single infectious vector (Bartlett 1964),
under the assumptions of constant recovery and death
rates, requires finding the smallest non-negative root of

! (3.9)

S

- vE 1 _ 1
L+ Ry {1 1+R(If"'(1fs)}
It is easy to show that the relevant solution is the
smaller of 1 and
1+ Ry
W . (3.10)
Ry" (Ry™ +1)
Furthermore, expression (3.10) is smaller than 1, and
hence is the relevant solution, if and only if the product
RUVRJH is greater than 1. This condition is exactly
that R is greater than 1. Consequently, when Ry is less
than or equal to 1, the relevant solution is 1 and so a
major outbreak can never happen. For Ry>1, the
probability of a major outbreak, following the intro-
duction of a single infectious vector, is (Bartlett 1964)

RV +1

l——
RV (RY7 +1)

(3.11)

The probability of a major outbreak following the
introduction of a single infectious host is found by
swapping the roles of RS/ A and Rgl V' in the preceding
argument. For Ry>1, this probability is equal to

RYH +1

l——r—7v—.
RI(R]+ 1)

(3.12)

Figure 1 depicts the dependence of the probability of
a major outbreak following the introduction of a single
infective vector on R} and REV. Since the overall
basic reproductive number is the product of these two
quantities, invasion is possible even if one of these is less
than 1. The asymmetric dependence of the invasion
probability on these two single-step basic reproductive
numbers is clear. Looking along the contour corre-
sponding to an overall R, value of 10 (the rightmost
dashed curve in the figure), we see that the probability
of a major outbreak is 0.75 if R} is 5 and R{" is 2,
whereas this probability falls to 0.6 if R is 2 and R
is 5. Extinction is more likely to occur if the
transmission step with the lower R, comes first. We
remark that one situation that can lead to such
asymmetry is when there is a large disparity between
the sizes of the host and vector populations, due to the
appearance of the V/H term in the expression for R{V.

3.2. Moment equations

For the deterministic model, repeated simulation,
starting from the same initial conditions, always leads
to the same outcome. This is not true for the stochastic
model: random effects mean that the model realizations
generated by such repeated simulation will typically
follow different trajectories. The changing numbers of
infectives over time must now be described in terms of a
probability distribution. We write p,( 9, 7) to denote the
probability of there being y infective hosts and 1
infective vectors at time ¢, starting from some specified
initial condition. (Since the numbers of infectives can
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VH
R 0

Figure 1. Invasion probabilities in the Ross model. The solid
curves are contours in the (RJ¥, RV plane along which the
probability of a major outbreak, following the introduction of
a single infective vector, is constant. From left to right, the
contours are shown for invasion probabilities of 0.01, 0.05, 0.1,
0.15, 0.2, 0.25, 0.4, 0.5, 0.6 and 0.75. Where space permits,
these probabilities are indicated to the right of the contours.
The dashed curves denote contours along which the overall R
(i.e. the product RJZRIV) is constant. From left to right,
these curves depict R values of 2, 4, 6, 8 and 10. As discussed
in the text, the corresponding figure for the probabilities
following the introduction of a single infective host can be
obtained by switching the labels of the two axes.

never be negative or exceed the appropriate population
size, we define p,( y, i) to equal zero whenever y<0, i<
0, y>Hor i>V.)

Using the probabilities from table 1, the following
expression can be derived for the probability that the
system will have ( y, 7) infectives at time ¢+d¢in terms
of the state of the system at time ¢:

Prrar(y,9)

I (y +1}

pi(y—1,9)dt +&(y+1)p,(y + 1,3)dt

ﬂy{V (i—1)}
H

+ <1 _ailH~y)

pi(y,i—=1)dt+0(i+1)p,(y,i+1)dt

Vi
LHz)ydt—éidt) pi(y,1).

(3.13)

Y) ., _
- dt—gydt

After rearranging, dividing through by dt and taking
the limit as d¢ approaches zero, the following is obtained:

dpsyar .
—ar Y
{H—(y+1
zal{—wmy_u) +E(y+1)p(y +1,0)

+43?/{V_—wpt(y, i—1)+0(i+1)p,(y,i+1)

(3.14)
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This set of (H+1)(V+1) differential equations, known
as the Kolmogorov forward equations (Grimmett &
Stirzaker 1992), describes how the probability distri-
bution of the random variable pair (Y, I) changes over
time. Noting that this set is linear in the p,(y, i), it can
be written in the form

(3.15)

where A is a constant (H+1)(V+1)X(H+1)(V+1)
matrix and p(¢) is a vector that contains the py y, ©),
arranged in some suitable order. The matrix A is
sparse: since there are at most four transitions by
which a typical state can be departed, most of the
entries of A are zero.

The Kolmogorov equations can be solved analyti-
cally in terms of matrix exponentials or by numerical
integration. They can also be used to find stationary
distribution(s) of the system: this involves finding a
suitably normalized vector p such that Ap=0. (In
other words, p is an eigenvector of A with eigenvalue
zero.) The size of the equation set, however, limits the
usefulness of the Kolmogorov equations for all but
the smallest population sizes. Instead, numerical
simulations of the stochastic model can be carried out
using standard Monte Carlo techniques (Kendall 1950;
Bartlett 1956, 1960), although these can be computa-
tionally expensive, particularly if large numbers of
realizations are required or if the population sizes
are large.

An alternative analytic approach involves consider-
ation of the moments of the distribution of (Y, I).
Starting from the Kolmogorov equations, the following
equation for the time derivative of the expectation of a
function of (Y, 1), E(f(Y,I)), can be derived (e.g.
Gardiner 1985):

4
dE(f(Y, 1)) ZE

J=

(Y, D)(4f(Y,I));). (3.16)

Here j labels the four possible events (infection of host,
infection of vector, recovery of host and death of
vector); A,( Y, I) is the rate at which event j occurs; and
(Af(Y, 1)), is the change in f(Y, I) that results when
event j occurs.

Using this result, the following differential equations
that describe how the first two moments of the (Y, I)
distribution change over time can be derived:

d o
3 B(Y) = aB(D) + 5 B(YD) =2E(Y),  (3.17)
d _BV 8
3 BU) = = B(Y) = B(YD) =6 E(I),  (3.18)
d a(2H—1)
EE(Y?) = aB(I) +EB(Y) + == B(YI)
—2%E(Y?) — %“E( Y1), (3.19)
d A%
EE(]Q) = 0B(I) + - B(Y) —20B(I%)
+%E(Y1) 26 E(YT?), (3.20)
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d B sV
4 BOYD) = aB(I*)—(E+0)E(YI) + = B( v?)
— Y B(Yr) - %E(WI).

H

The equations for the first-order moments—the
averages E(Y) and E(I)—can be rewritten using the
formula for the expectation of the product of random
variables, E(YI)=E(Y)E(I)+cov(Y, I). Then repla-
cing E(Y) by Yand E(I) by I gives a pair of equations
that closely resembles the deterministic system
(equations (2.1) and (2.2)), except for the presence of
two terms, each of which is proportional to the
covariance cov(Y,I). In general, the covariance of
two random variables is non-zero, and so the determi-
nistic model does not give an exact description of the
average behaviour of the stochastic model. Instead, we
can view the deterministic model as an approximation
to the average behaviour if it is assumed that the
covariance is zero, i.e. that the second-order central
moment E({Y—E(Y)}{I—E(I)}) vanishes.

As we have just seen, the equations for the first-order
moments involve second-order moments. Similarly, the
equations for the second-order moments involve third-
order moments. A corresponding result holds for the
equations for the moments of each order. In order to
obtain a finite set of moment equations, the set of
equations must be truncated at some point. This
involves making what is known as a moment closure
assumption. We have seen that the deterministic model
corresponds to assuming that second-order central
moments are zero. To close our set at second order,
we employ the multivariate normal approximation,
which assumes that all third-order central moments
vanish (Whittle 1957; Isham 1991; Lloyd 2004). For
instance, we take E({Y—E(Y)}*{I—E(I)}) to equal
zero. Multiplying out the brackets inside the expec-
tation and simplifying using the linearity properties of
the expectation operator, we see that the moment
closure assumption applied to this term gives

(3.21)

E(Y*I)—E(I)E(Y*) —2E(Y)E(YI)

+2E(D{E(Y)}* =0. (3.22)

This can be rearranged to give the third-order moment
E(Y?I) in terms of lower-order moments,

E(Y?I)=E(I)E(Y*) +2E(Y)E(YI)—2E(I){E(Y)}*.
(3.23)
Similarly, the moment closure approximation also gives
E(YI?)=E(Y)E(I*) + 2E(I)E(YT) —2E(Y){E(I)}*.
(3.24)
Substituting (3.23) and (3.24) into (3.17)—(3.21) yields
a set of equations that are closed at the second order.
The closed set of second-order moment equations
can be used to estimate the variability seen between
realizations of the stochastic model at any point in
time. It should be kept in mind that the moment
equations are only an approximation to the variation

exhibited by the system. Since we lack a good
description of the adequacy of this approximation,
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Figure 2. Moments of the stochastic model, shown as the
mean number of infective hosts (solid curve) and mean =+ s.d.
(dashed curves), calculated using the moment equations. For
comparison, numerical estimates of these quantities, obtained
by averaging over 10 000 simulation runs of the stochastic
model, are shown by the symbols. The initial condition has
five infective hosts and five infective vectors. Parameter
values are as follows: p=0.2; ¢=0.15; k=0.5; £=6=1/T,
H=100; and V=1000. The simulation-based estimates of
moments are only calculated over realizations in which the
infection has not undergone extinction by the time of interest
(i.e. they are moments conditional on non-extinction). For the
parameter values employed, extinction occurred in less than
2% of simulation runs.

their use is typically supplemented by the numerical
simulation of the stochastic model. Such a comparison
is made in figure 2, where the performance of the
moment equations is compared with moments calcu-
lated over a collection of realizations obtained by
simulation of the stochastic model.

We see that, at least for the set of parameter values
and initial conditions used, the moment equations
provide a fairly good approximation. It should be pointed
out, however, that the moment equations perform less
well, at least during the initial transient, if the initial
numbers of infectives are small (below approx. five each,
for the parameter set employed in the figure), although
they do give the correct long-term values of the moments.
This weakness of the moment equations is due to the
higher probability of extinction if the system is started
with few infectives and is a reflection of the moment
equations’ inability to capture the extinction events.
(Extinction only occurred in 2% of the realizations
underlying figure 2, whereas roughly 55% of realizations
undergo extinction if the simulation is started with just
one initial infective host and one initial infective vector.)

3.3. Variability about the endemic equilibrium

In the long run, the infection is guaranteed to go
extinct: the only stationary state of the stochastic
model has p(0, 0) =1 and all other p( y, 7) equal to zero.
Although it will eventually happen, extinction might
only occur over a very long time scale. Over intermedi-
ate time scales, however, the system may appear to
exhibit stationary behaviour, as described by the
so-called quasi-stationary distribution (such behaviour
is visible in figure 2 for ¢ larger than approx. 80). This
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distribution can be found by examining the behaviour
of the system conditional on non-extinction, as
described by the probabilities ¢, y, i), given by

N pt(% Z)
q(y, 1) = m,

for (y, i)# (0, 0) (Darroch & Seneta 1967; Nasell 1991).
Here, the denominator gives the probability that
extinction has not occurred by time t.

The quasi-stationary distribution captures the
variability of realizations about the endemic equili-
brium, providing a description of how far realizations
wander away from the equilibrium as they are buffeted
by demographic stochasticity. Assuming that the
average prevalence of infection does not fall to low
levels, extinction would be unlikely to occur if
realizations remained very close to the average
behaviour, whereas extinction would be much more
likely if realizations wander over distances that are
comparable to the average. Consequently, the coeffi-
cient of variation (the standard deviation divided by
the mean) of the number of infectives has been
suggested as a surrogate measure for the probability
of extinction for directly transmitted infections
(Keeling 2000; Lloyd 2004). In fact, making some
additional assumptions, expressions for extinction
probabilities can be written in terms of this quantity
(Nasell 1999). The situation is more delicate for a
vector-borne infection since stochastic fade-out
requires simultaneous extinction of infection in both
host and vector populations: analogous expressions for
extinction probabilities have yet to be developed for
vector-borne infections. (The development of such
expressions is beyond the scope of this study.)

The moment equations can be used to quantify the
variability seen about the endemic equilibrium. Since
the equations are an approximation, we assess their
accuracy by comparison with a characterization of the
quasi-stationary distribution obtained by Nasell (1991)
for a particular small population. Standard results
(Darroch & Seneta 1967) show that, as with the
stationary distribution, the quasi-stationary distri-
bution can be found using an eigenvalue/eigenvector
calculation. Removing the rows and columns of A that
correspond to the state (0, 0) gives a matrix that we
denote A’. The vector q is found as the appropriately
normalized eigenvector corresponding to the largest
eigenvalue of A’. Unless the system size is small, the size
of the matrix A makes this calculation difficult,
although the sparseness of A can be exploited. For the
50 host and 100 vector population employed by Nasell
(1991), A is a 5151 by 5151 matrix.

Figure 3 shows contours of the quasi-stationary
probability density function, ¢( y, ¢), for various values
of the density. For the bivariate normal distribution,
these contours are ellipses (Grimmett & Stirzaker
1992). We see that the moment equations provide an
excellent approximation for the main part of the
distribution (figure 3a). The moment equations provide
a relatively poor description of the tail of the
distribution (figure 3b), which may well limit their use
in providing a detailed quantitative description of
extinction in the system.

(3.25)
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Figure 3. Quasi-stationary distribution of the numbers of
infective hosts and infective vectors. The solid curves are
contours of the probability density function calculated
directly from the Kolmogorov equations. Dashed curves
denote the corresponding contours calculated using the
multivariate normal approximation. As discussed in the
text, these contours are ellipses. (a) Contour heights are
such that the ellipses of the multivariate normal distribution
enclose 20, 40, 50, 80, 90 and 95% of the mass of the
distribution. (b) Contour heights employed by Nasell (1991)
are used; his choice of contours emphasizes the tail of the
distribution. Note that the scales on the axes differ between
(a) and (b). The same set of parameter values is used for
both (a) and (b) and is the set employed by Nasell (1991), with
a=0.05, 6=4,£=0.1, 60=1, H=50 and V=100.

The variation seen about the endemic equilibrium
depends on the parameter values of the model. Standard
results (Kurtz 1971) show that, if the sizes of the host
and vector populations are both taken to be proportional
to N, then the variability, as measured by the coefficient
of variation, scales as 1/\/7\7 In models for directly
transmitted infections, it is well known that variability
decreases as R is increased (Bartlett 1956; Nasell 1996,
2002; Lloyd 2004). Figure 4, which shows the variability
seen in the numbers of infective hosts in the quasi-
stationary distribution about the endemic equilibrium,
shows that this is also the case for the Ross model.

4. MULTI-GROUP EXTENSION

We now consider a situation in which there are m types
of host and n types of vector (Barbour 1978; Dietz 1980;
Dye & Hasibeder 1986). These types could signify, for
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Figure 4. Dependence of variability, as measured by the
coefficient of variation and calculated using the moment
equations, in the number of infective hosts seen about the
endemic equilibrium as the basic reproductive number is
varied. Parameter values are as follows: p=0.2; ¢=0.15; £=
d3=1/7; H=100; and V=1000; and the biting rate, k, is varied
to give the range of R, values shown.

instance, different classes based on genetic, behavioural
or spatial distinctions.

Transmission parameters are allowed to differ
between the types, and we label types by subscripts.
Transmission from vector type i to host type j is
described in terms of the transmission parameter a;
This i is the product of the rate at which a vector of
type i bites hosts of type j, k;;, and the probability, p;,
that such a bite would lead to transmission if the vector
were infective and the host susceptible. In a similar
way, transmission from host type i to vector type j is
depicted in terms of the transmission parameter @,
which is the product of the biting rate k; and the
transmission probability ¢;. (Note that the indices 4
and j are transposed in the biting rate when we consider
transmission from host to vector.) The k;; could be
further decomposed: for instance, Dye & Hasibeder
(1986) assume that vectors of each type have the same
biting rate but that their bites are distributed
differently across the different host types, writing
kij=ky, where >y, =1

We assume that a;; and ;; are such that there is the
potential for the infection to spread between all pairs of
types of individuals, although this could involve an
infection chain that includes a number of intermediates.
This assumption corresponds to the notion that the
population cannot be subdivided into non-interacting
groups. Finally, the host recovery rate &; and the vector
death rate 6; can differ between the appropriate types.

Labelling H, V, I and Y according to their types, the
model can be written as

()

<ZB1Z ) —I)— &1

Here the index j takes values from 1 to m, while [ runs
from 1 to n. The total numbers of hosts and vectors are
written as H and V| respectively.

g] 7 (41)

(4.2)
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The earlier R, calculation must be extended to
account for the different types of hosts and vectors
(Barbour 1978; Dietz 1980; Dye & Hasibeder 1986).
Standard epidemiological theory tells us that the
correct way to do this is to find the largest
(dominant) eigenvalue of the so-called next gener-
ation matrix (Diekmann et al. 1990). The entries
of this matrix, which we write as R, (Y ), tell us
the average number of secondary 1nfect10ns that arise
among hosts of type j when a host of type i is
introduced into an entirely susceptible population.
(Alternatively, and equivalently in terms of this
calculation, one could work with the next generation
matrix for vectors We would write the entries of this
matrix as Ro (@) .) An infective host of type i can give
rise to a secondary infection of a host of type j by any
one of n routes, involving the intermediate infection
of one of the various vector types. Following the
earlier argument, we have that

- -5 () ). o
r=1 21

T

Here Rgl Vi (respectively, R(;/’HL) gives the average
number of secondary infections among vectors of type
Jj (respectively, hosts of type 4) that arise from a host of
type @ (respectively, a vector of type j)

The eigenvalues of the mX m next generation matrix
can be found by solving a polynomial of degree m. We
typically cannot find a simple formula for R in multi-
group models unless some additional assumptions are
made that lead to the matrix having some simple form.
One well-studied setting (Diekmann & Heesterbeek
2000) 1nvolves separable next generation matrices,
where R () takes the form a; :b;. In this case, the matrix
is a rank 1 matrix; each column is a multiple of the
vector a=(ay, a, ..., ay)". It is easy to see that a is an
eigenvector of this matrix, with eigenvalue > a;b;, and
that all other eigenvalues equal zero. Hence, the basic
reproductive number is equal to > a;b;.

As a specific example, Dye & Hasibeder (1986)
consider a setting in which vectors preferentially
bite some people over others, employing a model in
which there is one type of vector and m types of
hosts. The vector biting rate is k, but these bites are
allocated among the different types of hosts accor-
ding to the fractions v,; The per-bite probability of
transmission from an infected vector to a susceptible
host of type i is written as p; and the per-bite
probability of transmission from an infective host of
type ¢ to a susceptible vector as ¢;. If the lifespan of
an infected vector is the same, regardless of its type,
then the entries of the next generation matrix are
kzy,-yjqiij/(SEHi). This matrix is of the separable
form, and so we have

(4.4)

Further, Dye & Hasibeder (1986) assume that each p; is
equal to p, and each ¢; is equal to ¢. If the fraction
of hosts that are of type i is then written as h;, so that
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H;,=h,;H, the expression for R, becomes

_ KpgV i _ KV Z”: v

U7 6EH &hy  OH "h?

(4.5)

This formula involves the sum of squares of the
quantities v,/h;, weighted by h; Using a result that
relates the variance to the sums of squares and the
square of the mean, often written in the form Var(X)=
E(X*)— E(X)?, Dye and Hasibeder rewrite R,
as (k*pqV/d3EH){1+4Var(vy;/h;,h;)}. The variance
here is that of the quantities v;/h;, weighted by the
fractions h;. Heterogeneity, which leads to this variance
being greater than zero, inflates the value of Ry in a way
that is familiar from a number of settings (Dietz 1980;
Becker & Marschner 1990).

4.1. Invasion probabilities

The multi-type branching process described above can
be extended in an obvious way to consider the m+n
types of individuals of the multi-group model. The
probabilities of the occurrence of major outbreaks,
starting from a single individual of a given type, are
found by solving the set of equations

Gu.(8tys -y SH, s 8V,s -5 Sv,) = 8y 1 =1,...,m,
(4.6)

GV](SH17 ey SH Yy ey SY,) = sy, J=1..,n
(4.7)

Here, sy and sy, give the extinction probabilities
starting from one infectious host of type i or one
infectious vector of type j, respectively. Using an
obvious extension of the earlier notation, the generating
functions Gy, and GV] describe the distributions of the
numbers of secondary infections of each type to which a
host of type i and a vector of type j, respectively, give
rise. As before, the lack of direct host to host and vector
to vector transmission simplifies these equations: the
Gy, do not depend on the s , and the Gy, do not depend
on the sy,

These equations always have a solution with all
sy, =1 and all sy, = 1. If Ry is greater than 1, there
is also a solution with all the s strictly less than 1
(Athreya & Ney 1972): a major outbreak can occur.
Invasion occurs with probability 1— sy, if a single
infective type j vector is introduced, or with
probability 1— sy if a single infective type i host is
introduced. If infection is introduced via a randomly
selected individual, then the major outbreak prob-
ability is calculated as a weighted sum of the type-
specific invasion probabilities (Becker & Marschner
1990). For instance, if infection is introduced via a host,
with the probability that this host is of type 7 equalling
m;, then the probability of a major outbreak is given by
2oimi(1—=sp).

A further simplification of (4.6) and (4.7) occurs if
the numbers of secondary infections of different types
that arise from each individual are independent. In this
case, the generating functions can be written as the
products of simpler generating functions (Grimmett &
Stirzaker 1992). This situation holds when infection is
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of fixed duration (see the electronic supplementary
material for further discussion of this case). In general,
however, the numbers of secondary infections are not
independent. In particular, this is the case for the Ross
model, with its exponential distributions of infectious
periods. Although each individual is assumed to give
rise to secondary infections of the different types
independently and at constant rates over their infec-
tious period, the distribution of infectious periods leads
to non-independence. For example, an individual whose
infectious period happens to be short will probably give
rise to fewer secondary infections of each type than the
typical individual. Similarly, if they happen to have a
long infectious period, they will probably give rise to
more than the average number of secondary infections
of each type. Consequently, there will be some
correlation between the numbers of secondary infec-
tions of the different types. (See Mollison & Kuulasmaa
(1985) for a similar observation, made in a slightly
different setting.)

Consideration of the joint probability distribution of
the numbers of secondary infections of different types
shows that the generating functions describing trans-
mission in the multi-group Ross model are of the form
(Griffiths 1972; Ball 1983)

1
TIR S R s

(4.8)

Here R} is the average number of secondary infections
of type 4. (For further details of the calculation, see the
electronic supplementary material.)

We illustrate the calculation of invasion probabil-
ities by considering a two-host, one-vector model, for
which equations (4.6) and (4.7) become

GHlv(Sv) = SH,» (4-9)
G,y (sv) = sn,, (4.10)
GV(SHlv SHZ) =Sy, (4-11)

and so the invasion probabilities can be found in terms
of the solution of

GV(GHlV(SV)v GHQV(SV)) = Sy- (4.12)
Using equations (3.5) and (4.8), this gives
1
=sy.
1 +R‘}/Hl{1_m} +R(}'H2{1—m}
(4.13)

Rearranging gives a cubic equation for sy, one solution
of which is sy=1. The remaining solutions are found by
solving the quadratic

RYVREY (14 Ry 4 R sy
— R (L REY) (1 Y™
R (1 BEY) (14 R sy

+(1+ R0 (1+R) =0, (4.14)
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Figure 5. Major outbreak probability, following the introduc-
tion of infection with a single infective vector, in a two-host,
one-vector model, as a function of the vector’s preference for
the first type of host. A fraction vy, of bites are made on hosts
of type 1 and y,=1—; are made on hosts of type 2. The solid
curve denotes the invasion probability found by solving
equation (4.13) and calculating 1 — sy, and the symbols depict
probabilities estimated from numerical simulation, using
10 000 realizations for each set of parameter values. Par-
ameter values are as follows: p=0.2; ¢=0.15; k=0.5; £=6=
1/7; H;=200; and H,=800. (a) V=2000, and (b) V=3000.

To provide an example of the use of this equation, we
consider a situation in which hosts differ only in terms of
their attractiveness to vectors (so that p;=p and ¢;= q).
We assume that there are 1000 hosts, of which one-fifth
are of type 1 and the remainder are of type 2. As defined
above, the parameter vy, specifies the fraction of bites
that are made on hosts of type 1. When v, is equal to
0.20, vectors have no preference between the two types
of host, effectively returning us to the single-type
(homogeneous) setting. Otherwise, there is hetero-
geneity in biting and hence transmission: vectors have
apreference for hosts of type 1 (respectively, type 2) if v,
is above (respectively, below) 0.2. Equation (4.4) shows
that R, is proportional to y3/200+ (1— y;)?/800—a
function with minimum at v, =1/5, as expected from
the preceding discussion.

Invasion probabilities obtained from (4.13) are shown
in figure 5, together with simulation-based results. Very
good agreement is seen between the two sets of results in
both cases. For the parameter values employed in
figure 5a, the basic reproductive number is 3.7 if the
vectors bite only hosts of type 1, while the corresponding
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Figure 6. Major outbreak probability, following the introduc-
tion of infection with a single infective vector (solid curve) or a
single infective host (dashed curve), in a two-host, one-vector
model, as a function of the vector’s preference for the first type
of host. Invasion probabilities are calculated in terms of the
solution of equation (4.13). As in the previous figure, a
fraction vy, of bites are made on hosts of type 1 and yo=1—1,
are made on hosts of type 2. In (a—c), y=0=1/7 and 20% of
the host population is of type 1. Other parameter values are as
follows: (a) p=0.2, ¢=0.15, k=0.5, H=1000 and V=23000.
(b) As given in (a), except that V=230 000. (¢) p=0.2, ¢=0.01,
k=2.5, H=1000 and V=3000.

basic reproductive number when vectors bite only hosts
of type 2 is 0.92. Infection cannot invade the population
if too many of the bites are made on hosts of type 2. Since
there are 50% more vectors in the population depicted in
figure 5b, these basic reproductive numbers are larger,
having values 5.5 and 1.4, and invasion is possible for all
values of v;. We note that the invasion probability in
figure 5b takes its lowest value when v;=1/5.
Changing the vector biting preference parameter, v,
in the two-host, one-vector model can have dramati-
cally different impacts on the probabilities of disease
invasion starting from a single infective host or a single
infective vector. This is illustrated in figure 6a—c, in
each of which it should be noted that R takes a similar
form, namely a quadratic with minimum at y,;=1/5.
Changes in vy; can lead to one invasion probability
increasing while the other decreases, although they can
also change together. In figure 6a, for example, there is
a range of vy, values for which the two invasion
probabilities increase and decrease together as 7y is
varied, while they move in opposite directions over
another range. In addition, the invasion probability
need not be a monotonic function of R, as shown by the
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decreasing invasion probability following the introduc-
tion of an infective host for values of vy; above
approximately 0.65.

The magnitudes of the changes in the two invasion
probabilities can also differ considerably, as witnessed
in figure 6b,c. Such situations can arise when there is a
large difference between the value of R from host to
vector and its value from vector to host. In figure 60, for
example, the R, value from vector to host is 0.7 and
from host to vector (for a randomly chosen host) is
15.75. In figure 6¢, the corresponding R, values are 3.5
and 0.525. A fairly good estimate of the less variable
invasion probability can be obtained using the formula
for the well-mixed setting. (Recall that the well-mixed
setting corresponds to y;=0.2, and so, if the invasion
probability is not changing much with vy, its value at
this point will be close to its value across the entire
range.) For instance, for figure 6b, taking RJ” = 0.7 and
RIV=15.75 in equation (3.11) gives an invasion
probability starting from a single infective vector of
0.374: the value observed as v, is changed varies by less
than approximately 8% of this. For figure 6¢, the
invasion probability starting from a single infective
host differs by less than approximately 20% of the value
0.157 given by (3.12).

4.2. Moment equations

As before, a stochastic version of the multi-group model
can be formulated by reinterpreting the rates that
appear in the deterministic model. The Kolmogorov
forward equations for this model consist of
(Hy+1)(Hy+1)...(H,+1)(Vi+1)...(V,+1) differ-
ential equations. The dimension of the moment
equation set is significantly increased when compared
with the corresponding set in the well-mixed
model. There are m+n first-order moments, and the
variance-covariance matrix has dimension (m+n)?
with  (m+n)(m+n+1)/2 independent entries.
(The variance—covariance matrix is symmetric
since cov(X, Y)=cov(Y, X).) Consequently, there are
(m~+n)(m+n+3)/2 equations in our set of first- and
second-order moment equations. Even for a two-host,
two-vector model, this means we have 14 equations.
Generation of such a large set of moment equations by
hand is a painstaking task, although this is somewhat
reduced by the symmetry of the model. As an example,
once one has an equation for the first-order moment
E(I;), the corresponding equations for E(I;), for
i1=2, ..., m, follow by an appropriate change of indices.
Rather than generating the set by hand, we employed an
alternative approach that automates the process. The
Kolmogorov forward equations can be used to formulate
apartial differential equation for the generating function
(or, alternatively, for the moment generating function)
of the joint distribution of Y3, ..., Y, I, ..., I,, (e.g.
Bartlett 1956, 1960; Grimmett & Stirzaker 1992). The
differential equations for the moments can be obtained
by performing a series expansion of this equation.
Finally, as discussed earlier, the set of equations must
be closed using, for instance, the multivariate normal
approximation. Each step of this process can be
automated and so, using a symbolic algebra package
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Figure 7. Average behaviour and variation about the average
in the two-host, one-vector model, in terms of the vector’s
preference for the first host. As in the previous figure, a
fraction vy, of bites are made on hosts of type 1 and yo=1—1,
are made on hosts of type 2. Solid curves denote the average
total number of infective hosts, £ (Y7 + Y3). The variability of
realizations about this average is indicated by the dashed
curves, which depict mean+s.d. of the total number of
infective hosts. The standard deviation is calculated as the
square root of Var(Y;)+ Var(Ys)+2cov(Y7, Ys). All curves
are calculated using moment equations closed by means of the
multivariate normal approximation. (The origin of the gaps in
the curves is discussed in the text.) Symbols denote the
corresponding quantities calculated from 1000 realizations of
the stochastic model. All parameter values are the same as
given in figure 5, with (a) depicting the model with V=2000
and (b) V=23000.

(such as MAPLE or MATHEMATICA), a computer can
produce a set of moment equations (of any specified
order), if given a description of the possible transitions of
the model and the rates at which they occur (Root &
Lloyd in preparation).

The moment equation set for the two-host, one-
vector model discussed above comprises nine equations
(we do not show these here). Figure 7 compares the
estimates of moments obtained using these equations
with estimates based on numerical simulation of the
stochastic model. For the most part, excellent agree-
ment is seen. This is not the case, however, near the
Ry=1 threshold in figure 7a, or near the point where R,
takes its minimum value in figure 7b. In fact, for the
parameter set chosen in these examples, the moment
equations were badly behaved in these regions. For
example, they appeared not to converge at the
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minimum point in figure 7a. This may well be related to
the more frequent occurrence of endemic fade-out in
this regime: analogous problems have been noted in
applications of moment equations closed by means of
the multivariate normal approximation in the setting of
an SIR model for a directly transmitted infection
(Lloyd 2004). Use of an alternative moment closure
approximation, such as the multivariate lognormal
approximation (Keeling 2000), may lead to a better
behaved system.

The total number of infective hosts is maximized when
71 is below 1: even though the basic reproductive number
is higher when 7y, equals 1, the smaller number of hosts of
type 1 means that fewer infections arise when too many
bites are concentrated on these hosts. Dye & Hasibeder
(1986) discuss the possible shapes that this curve can
take. An interesting observation is that the variability in
the number of infective hosts decreases as v, is increased
from its value at this maximum point to 1, even though
the average number of infective hosts decreases.

5. DISCUSSION

This paper has examined the use of two analytic tools
that quantify the impact of stochasticity and hetero-
geneity in host—vector models. Results obtained using
branching process methodology demonstrated that
asymmetry between the disease transmission potentials
from hosts to vectors and from vectors to hosts can have
important consequences. For instance, the disease
invasion probability starting from a single infective
host and the invasion probability starting from a single
infective vector can differ markedly, even though the
overall basic reproductive number of the infection is the
same in both cases. In heterogeneous settings, the two
invasion probabilities can have a complex relationship
with each other as model parameters are varied. In
particular, we saw that the invasion probabilities need
not have a monotonic relationship with the basic
reproductive number of the infection, or with each
other. Asymmetry between the transmission potentials
can lead to one invasion probability having almost no
variation as a model parameter is varied, while the
other changes over a large range.

Moment equations were used to assess the impact of
demographic stochasticity on the endemic behaviour of
the Ross model. Even though the host and vector
populations employed in the model simulations were by
no means large (of the order of tens or hundreds in
figure 3, or thousands in figure 7), the variation seen
about the endemic equilibrium was typically not
substantial. This is partly due to the Ross model being
of SIS type: infected hosts become susceptible immedi-
ately upon recovery, and vectors that die are immedi-
ately replaced by newborns. The impact of demographic
stochasticity is often much higher for infections against
which hosts develop immunity, for which an SIR or SIRS
description may be more appropriate. Immunity means
that there can be a large number of recovered individuals
that take no part in the infection process, leading to a
reduction in the equilibrium number of infective hosts.
This effect is most noticeable when the duration of
immunity is long. A well-known example, albeit in
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a directly transmitted infection setting, is provided by
measles in the pre-vaccination era (Bartlett 1956).
Lifelong immunity following infection leads to a large
separation of time scales between the infection process
(with infection lasting on the order of a week and typical
individuals acquiring infection within a few years of
birth) and the demographic time scale on which the
susceptible pool turns over (on the order of many
decades). Consequently, demographic stochasticity
exerts a major impact, with frequent disease extinc-
tion—due to endemic fade-out—occurring for all but the
largest population centres.

The analyses discussed in this paper can easily be
extended to consider a host—vector model for which the
host acquires temporary immunity: the impact of
immunity on variability about the endemic equilibrium
is briefly explored using moment equations in the
electronic supplementary material and it is indeed seen
that host immunity increases the impact of demo-
graphic stochasticity.

The population dynamics of many vector popu-
lations has a sizeable seasonal component. Such effects
can be incorporated within models such as the Ross
model (Aron & May 1982). It is well known that
seasonality can have a dramatic effect on the dynamics
of infectious diseases, even within a deterministic
framework. The interaction between the intrinsic
predator—prey dynamics and external forcing can lead
to sustained oscillations, or more complex dynamic
behaviours, replacing the endemic equilibrium typi-
cally seen in unforced systems. In many instances, large
swings in prevalence can result. Consequently, the
impact of demographic stochasticity can be amplified in
the presence of seasonality. Moment equations have
been successfully deployed in seasonal settings (Lloyd
2004), providing estimates for the increased variability
due to variations in transmission. This remains to be
explored in the host—vector setting.

The complexity of stochastic models has often meant
that model exploration is largely carried out by means
of simulation approaches. Such simulation, however,
can often prove to be time consuming, particularly
when large number of realizations must be generated
and large regions of parameter space are to be explored.
Analytic approaches, such as those outlined here, can
provide an attractive alternative, giving a rapid means
to gain understanding of the dynamics of infections in
the face of randomness.

We wish to thank Ingemar Nasell for providing the MATLAB
code that was used to calculate the exact quasi-stationary
distribution in figure 3 and an anonymous referee for helpful
comments. This work was supported by the National
Institutes of Health (grant number R01-AI54954-0IA2).
AM.R. holds a GAANN Fellowship (NCSU Scientific
Computation programme funded under the US Department
of Education award number P200A030277).

REFERENCES

Aron, J. L. & May, R. M. 1982 The population dynamics
of malaria. In Population dynamics of infectious diseases
(ed. R. M. Anderson), pp. 139-179. London, UK:
Chapman and Hall.



Stochasticity in host-vector models

A. L. Lloyd et al. 863

Athreya, K. B. & Ney, P. E. 1972 Branching processes.
Berlin, Germany: Springer.

Ball, F. 1983 The threshold behaviour of epidemic models.
J. Appl. Prob. 20, 227-241. (doi:10.2307/3213797)

Barbour, A. D. 1978 Macdonald’s model and the transmission
of bilharzia. Trans. Roy. Soc. Trop. Med. Hyg. 72, 6-15.
(doi:10.1016/0035-9203(78)90290-0)

Bartlett, M. S. 1956 Deterministic and stochastic models for
recurrent epidemics. In Proc. Third Berkeley Symp.
Mathematical statistics and probability, vol. 4 (ed.
J. Neyman), pp. 81-109. Berkeley, CA: University of
California Press.

Bartlett, M. S. 1960 Stochastic population models. London,
UK: Methuen.

Bartlett, M. S. 1964 The relevance of stochastic models for
large-scale epidemiological phenomena. Appl. Stat. 13,
2-8. (doi:10.2307/2985217)

Becker, N. & Marschner, 1. 1990 The effect of heterogeneity on
the spread of disease. In Stochastic processes in epidemic
theory, vol. 86 (eds J.-P. Gabriel, C. Leféevre & P. Picard).
Lecture notes in biomathematics, pp. 90-103. Berlin,
Germany: Springer.

Darroch, J. N. & Seneta, E. 1967 On quasi-stationary
distributions in absorbing continuous-time finite Markov
chains. J. Appl. Prob. 4, 192-196. (doi:10.2307/3212311)

Diekmann, O. & Heesterbeek, J. A. P. 2000 Mathematical
epidemiology of infectious diseases. Chichester, UK:
Wiley.

Diekmann, O., Heesterbeek, J. A. P. & Metz, J. A. J. 1990 On
the definition and computation of the basic reproduction
ratio Ry in models of infectious diseases in heterogeneous
populations. J. Math. Biol. 28, 365-382. (doi:10.1007/
BF00178324)

Dietz, K. 1980 Models for vector-borne parasitic diseases.
In Vito Volterra Symp. Mathematical models in biology,
vol. 39 (ed. C. Barigozzi). Lecture notes in biomathe-
matics, pp. 264-277. Berlin, Germany: Springer.

Dye, C. M. & Hasibeder, G. 1986 Population dynamics of
mosquito-borne disease: effects of flies which bite some
people more frequently than others. Trans. Roy. Soc.
Trop. Med. Hyg. 83, 69-77. (doi:10.1016/0035-9203(86)
90199-9)

Gardiner, C. W. 1985 Handbook of stochastic methods. Berlin,
Germany: Springer.

Griffiths, D. A. 1972 A bivariate birth-death process which
approximates to the spread of a disease involving a vector.
J. Appl. Prob. 9, 65-75. (d0i:10.2307/3212637)

Grimmett, G. R. & Stirzaker, D. R. 1992 Probability and
random processes. Oxford, UK: Oxford University Press.

J. R. Soc. Interface (2007)

Isham, V. 1991 Assessing the variability of stochastic
epidemics. Math. Biosci. 107, 209-224. (doi:10.1016/
0025-5564(91)90005-4)

Keeling, M. J. 2000 Multiplicative moments and measures of
persistence in ecology. J. Theor. Biol. 205, 269-281.
(doi:10.1006/jtbi.2000.2066)

Kendall, D. G. 1950 An artificial realisation of a simple “birth-
and-death” process. J. R. Stat. Soc. B 12, 116-119.

Kurtz, T. G. 1971 Limit theorems for sequences of jump
Markov processes approximating ordinary differential
equations. J. Appl. Prob. 8, 344-356. (doi:10.2307/
3211904)

Lloyd, A. L. 2004 Estimating variability in models for
recurrent epidemics: assessing the use of moment closure
techniques. Theor. Popul. Biol. 65, 49-65. (doi:10.1016/
j-tpb.2003.07.002)

Macdonald, G. 1952 The analysis of equilibrium in malaria.
Trop. Dis. Bull. 49, 813-829.

Mollison, D. 1991 Dependence of epidemic and population
velocities on basic parameters. Math. Biosci. 107, 255-287.
(doi:10.1016/0025-5564(91)90009-8)

Mollison, D. & Kuulasmaa, K. 1985 Spatial epidemic models:
theory and simulations. In Population dynamics of rabies
in wildlife (ed. P. Bacon), pp. 291-309. London, UK:
Academic Press.

Nasell, I. 1991 On the quasi-stationary distribution of the
Ross malaria model. Math. Biosci. 107, 187-207. (doi:10.
1016,/0025-5564(91)90004-3)

Nasell, I. 1996 The quasi-stationary distribution of the closed
endemic SIS model. Adv. Appl. Prob. 28, 895-932. (doi:10.
2307/1428186)

Nasell, I. 1999 On the time to extinction in recurrent
epidemics. J. R. Stat. Soc. B 61, 309-330. (doi:10.1111/
1467-9868.00178)

Nasell, I. 2002 Stochastic models of some endemic infections.
Math. Biosci. 179, 1-19. (doi:10.1016/S0025-5564(02)
00098-6)

Root, A. M. & Lloyd, A. L. In preparation. Computer-
automated generation of moment equations for stochastic
models.

Ross, R. 1910 The prevention of malaria. London, UK: J.
Murray.

Ross, R. 1911 Some quantitative studies in epidemiology.
Nature 87, 466-467.

Whittle, P. 1957 On the use of normal approximation in the
treatment of stochastic processes. J. R. Stat. Soc. B 19,
268-281.

Woolhouse, M. E. J. et al. 1997 Heterogeneities in the
transmission of infectious agents: implications for the
design of control programs. Proc. Natl Acad. Sci. USA 94,
338-342. (doi:10.1073/pnas.94.1.338)


http://dx.doi.org/doi:10.2307/3213797
http://dx.doi.org/doi:10.1016/0035-9203(78)90290-0
http://dx.doi.org/doi:10.2307/2985217
http://dx.doi.org/doi:10.2307/3212311
http://dx.doi.org/doi:10.1007/BF00178324
http://dx.doi.org/doi:10.1007/BF00178324
http://dx.doi.org/doi:10.1016/0035-9203(86)90199-9
http://dx.doi.org/doi:10.1016/0035-9203(86)90199-9
http://dx.doi.org/doi:10.2307/3212637
http://dx.doi.org/doi:10.1016/0025-5564(91)90005-4
http://dx.doi.org/doi:10.1016/0025-5564(91)90005-4
http://dx.doi.org/doi:10.1006/jtbi.2000.2066
http://dx.doi.org/doi:10.2307/3211904
http://dx.doi.org/doi:10.2307/3211904
http://dx.doi.org/doi:10.1016/j.tpb.2003.07.002
http://dx.doi.org/doi:10.1016/j.tpb.2003.07.002
http://dx.doi.org/doi:10.1016/0025-5564(91)90009-8
http://dx.doi.org/doi:10.1016/0025-5564(91)90004-3
http://dx.doi.org/doi:10.1016/0025-5564(91)90004-3
http://dx.doi.org/doi:10.2307/1428186
http://dx.doi.org/doi:10.2307/1428186
http://dx.doi.org/doi:10.1111/1467-9868.00178
http://dx.doi.org/doi:10.1111/1467-9868.00178
http://dx.doi.org/doi:10.1016/S0025-5564(02)00098-6
http://dx.doi.org/doi:10.1016/S0025-5564(02)00098-6
http://dx.doi.org/doi:10.1073/pnas.94.1.338

	Stochasticity and heterogeneity in host-vector models
	Introduction
	The deterministic Ross model
	The basic reproductive number, R0

	Demographic stochasticity in the Ross model
	Invasion probabilities
	Moment equations
	Variability about the endemic equilibrium

	Multi-group extension
	Invasion probabilities
	Moment equations

	Discussion
	We wish to thank Ingemar Nåsell for providing the Matlab code that was used to calculate the exact quasi-stationary distribution in figure 3 and an anonymous referee for helpful comments. This work was supported by the National Institutes of Health (gr...
	References


