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I.   Time Series Dynamics with Dominant and Recessive Fitness Costs 
 
Although in the absence of empirical data it is reasonable to assume additive fitness costs, there are a 
number of sources of fitness costs that could result in more dominant or more recessive fitness costs. 
For example, a fitness cost due to the site of insertion could be recessive if only homozygosity of the 
specific gene disrupted by the insertion of the construct, or homozygosity of the region flanking the 
insertion, leads to unfit phenotypes. More dominant acting fitness effects could be seen if expression of 
one copy of the anti-pathogen gene decreased fitness about the same amount as expression of two 
copies. 
 
We compared the results shown in Figure 3a (fitness costs are additive, cK2 and cR2 both equal 0.10, 
and a single 2:1 release) with results from similar releases except that the fitness cost associated with 
either K or R was changed to be completely recessive or completely dominant. (We retained an 
additive interaction between the two loci, so there is no epistasis.)  
 
Changing the dominance of the fitness cost associated with K (Figure S1a and S1b) while holding the 
R fitness cost as additive had only a small impact on the results. However, when the K fitness cost was 
held as additive and the dominance of the R fitness cost was varied (Figure S1c and S1d) a stronger 
effect was seen. When cR1 equals cR2  (complete dominance of R), the frequency of R remains very 
high through generation 120. This very slow decline in R is attributable to the fact that there is very 
low additive genetic variance for fitness when the frequency of R is high and individuals with RR and 
Rr have the same fitness. The most positive result in terms of sustaining low transmission of the 
pathogen occurs if the K fitness cost is completely recessive and the R fitness cost is completely 
dominant. In this case the R allele remains at high frequency past generation 600 (not shown). 
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 (a). Initial frequency = 66%; 1 killer gene; 1 release
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 (b). Initial frequency = 33%; 1 killer gene; 1 release
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 (c). Initial frequency = 33%; 1 killer gene; 4 releases
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Figure S1. Allele frequencies and population fitness over time, following the release of Killer-
Rescue strains with cK2 and cR2 each equal to 0.1 and with varying dominance of the fitness costs. 
All releases are at a 2:1 ratio. a) The fitness cost associated with K is recessive and the fitness cost 
associated with R is additive. b) The K fitness cost is dominant and the R fitness cost is additive. c) 
The K fitness cost is additive and the R fitness cost is recessive. d) The K fitness cost is additive and 
the R fitness cost is dominant. 



II. Time Series Dynamics of All Male Release 
 
In all of the model runs above and in the main text, the releases involved a 1:1 sex ratio of engineered 
mosquitoes. Even though the mosquitoes to be released are homozygous for a gene that interrupts 
transmission of the pathogen, regulations may only allow release of male mosquitoes because excess 
males do not increase population growth, and they do not bite humans or animals. We therefore ran the 
model with releases of only males. The ratios of released males to the entire native population of males 
and females were either 2:1 or 1:2. We assumed both cK2 and cR2 were equal to 0.10 and additive 
inheritance, as in the results presented in Figure 3. A single 2:1 release of males (Figure S2a) is not as 
effective as a 2:1 release that includes both males and females (Figure 3a). However, four releases of 
all males in a 1:2 ratio to the natural population (Figure S2b) gave results similar to four releases of 
males and females in a 1:2 ratio (Figure 3c).  
 
When only one sex is released, all of the released individuals must mate with wildtype individuals of 
the opposite sex. No matter how high the release level, even at a ratio of 19:1, the K and R frequency 
in the first generation can only approach 0.5. As the ratio of released males to native males and females 
increases, the efficiency of the release goes down. If a given number of males is released over a few 
generations instead of one generation, the efficiency is decreased to a lesser extent. 
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Figure S2. Allele frequencies and population fitness over time, following release of Killer-Rescue 
strain males.  Additive fitness costs with cK2 and cR2 each equal to 0.1. a) Single 2:1 release of males 
relative to all males and females in the wild population. b) Four 1:2 releases of all males. 
 



III. Allele Fitnesses 
In two-locus systems with inter-locus interactions (epistasis), the selection factors responsible for 
changes in allele frequencies over time are not always intuitive.  We, therefore, found it useful to plot 
the overall fitness of each allele (K, k, R and r) over time as the genotype frequencies in the population 
changed. The relative fitness of each allele per generation is defined as the ratio of the number of 
copies of the allele expected when the Killing gene is active to the expected number of copies of that 
allele if the Killing gene was made inactive (fitness costs remaining). At a qualitative level it is clear 
that the fitness of the r allele in a population is lower when the frequency of the K allele is 0.9 than 
when the K allele has a frequency of 0.1. For a given frequency of K, the r allele fitness is higher when 
the frequency of R is high and the r allele is therefore often imbedded in a rescued Rr heterozygote 
genotype.  
 
We have plotted the allele fitnesses to parallel the allele frequency changes in the scenarios of Figures 
3a,b,c, and d, where cK2 and cR2 are both 0.10, and have additive effects. In this case, when the initial 
release frequency is 0.33 (Figure 3b and Figure S3b) the Rescue allele (R) and the non-rescue allele (r) 
have equal fitness at generation 12 (Figure S3b). At this point Figure 3b shows that the frequency of 
allele R stops increasing. This same dynamic is found in the case with insertion of the K allele at two 
loci (Figure 3d and Figure S3d) except that it takes longer for the fitness of r to reach that of R (~40 
generations). 
 
The lowest fitness of the K allele is seen with an initial release of 0.33 (Figure S3b) when the 
frequency of K is very low and R is decreasing. This is reasonable because as the frequency of R 
approaches zero, the fitness of the K allele approaches 0.0. 
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 (b). Initial frequency=33%; 4 Releases of All Males 
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Figure S3. Fitnesses of alleles K, k, R and r alleles over time when release frequencies and engineered 
strain properties are as in figure 3 of the main text. In all cases cK2 and cR2 are both 0.10, and have 
additive effects. 
 



IV. Iterative equations for the two-locus killer-rescue system  

Our mathematical model for the two-locus killer-rescue system is most succinctly represented as a set 

of iterative equations for the gamete frequencies. We write the frequencies of the four gametes as 

follows: x1 stands for the frequency of KR, x2 denotes the frequency of Kr, x3 denotes the kR frequency 

and x4 denotes the frequency of kr. For each of these we have 0 ≤ xi ≤ 1. We write the fitness cost to a 

genotype heterozygous for R as cR1, the cost to a homozygote for R as cR2, the cost to a genotype 

heterozygous for K as cK1, and the cost to a homozygote for K as cK2.  We have that 0 ≤ cK1 ≤ cK2 and 

0 ≤ cR1 ≤ cR2.  

 

We assume that fitness costs are additive between the two loci. (a separate analysis that assumed 

multiplicative interactions produced similar results.) This imposes the constraint that  

1 – cRi - cKj ≥ 0 for all pairs ( i , j ), since fitnesses cannot be negative. Here we assume that both killer 

and rescue are completely dominant: genotypes carrying no rescue allele but at least one killer allele 

are not viable, whereas genotypes carrying at least one rescue allele are viable. 

  

We obtain the following equations for the gamete frequencies in the next generation (denoted by 

primes) in terms of the current generation’s gamete frequencies 

 

 (1) 

 

Here, W is the mean fitness of the gametes, whose value is given by the sum of all of the terms on the 

right-hand sides of the four equations. (If there were no fitness costs and all genotypes were viable then 

W would equal one, but in general its value equals one minus the sum of all the reductions in 

contributions to the next generation due to fitness costs and non-viability of genotypes. In this light, we 

see that the expression for W is more complicated when there are fitness costs than when they are 

absent. As we shall see below, this impacts our ability to obtain analytic expressions for equilibria.) 

Since we have that x1 + x2 + x3 + x4 = 1, one of the above equations is redundant: we can eliminate any 

one of the xi, rewriting our system as a three dimensional model. 



 

The corresponding equations under the assumption of multiplicative fitness costs between the two loci 

can be obtained by a straightforward modification of the above set of equations. 

 

 

V. Equilibrium and local stability analysis 

 
The behavior of the model is investigated using a combination of equilibrium and local stability 

analysis, aided by the computer algebra package Maple (Maplesoft, Waterloo Ontario, Canada) and 

numerical simulation. We cannot find complete analytic solutions for all equilibria for general values 

of the parameters describing the fitness costs so we instead concentrate on special cases that cover 

many of the situations of greatest interest. 

 

It is straightforward to show that the three lines x1 + x3 = 1 (i.e. a mixture of KR and kR alone: the 

rescue allele, R, is fixed), x3 + x4 = 1 (i.e. a mixture of kR and kr alone: the killer allele, K, is absent), 

and x1 + x2 = 1 (i.e. a mixture of KR and Kr: the killer allele, K, is fixed) are invariant. Trajectories that 

start on any one of these lines remain there. Points on the line x2 + x4 = 1 get mapped onto the point 

(0, 0, 0, 1): if there is a mixture of Kr and kr alone, then the following generation contains just kr (both 

K and R absent). 

 

The existence of these invariant lines means that the dynamics of the system on each of these lines can 

be described by a single equation.  

On the “R fixed” line, x1 + x3 = 1, the governing equations can be shown to reduce to the following 

equation 

 (2) 

(Alternatively, an equation can be derived to describe how the x1 component changes.)  

On the “K absent” line, x3 + x4 = 1, the system can be reduced to 

 (3) 

Finally, on the “K fixed” line, x1 + x2 = 1, the system reduces to 



 (4) 

 

A. No fitness costs 

 

There are two lines of equilibria:  

1. R fixed: x1 + x3 = 1, 

2. K absent: x3 + x4 = 1, 

and two isolated equilibria: 

3. (b, b, -b, 1-b), where . These equilibria are not biologically feasible since the 

second and third components have opposite signs: one component must be negative. 

 

Local linear stability analysis proceeds in the usual fashion: the 3×3 Jacobian matrix of the equations 

relating the gamete frequencies in successive generations is calculated and evaluated at the equilibrium 

point of interest. The eigenvalues of this matrix are calculated and their moduli examined. If all 

eigenvalues have modulus less than one then the equilibrium is (locally) stable. If one or more 

eigenvalue has modulus greater than one then the equilibrium is unstable. Linear stability analysis is 

inconclusive if the eigenvalue with largest modulus falls on the unit circle: a nonlinear analysis, which 

may be quite involved, is required to determine stability in such instances.  

 

The Jacobian matrix of the system evaluated at any point on the “R fixed” line has eigenvalues equal to 

1, 1 and ½. One eigenvalue of unity arises because there is no motion along the line of equilibria: there 

is neutral stability along the line. Numerical simulation indicates that the line is attracting, but, as the 

second eigenvalue equals one, linear stability analysis is inconclusive. The nonlinear analysis required 

to prove that this line is attracting is not straightforward. (Stability properties could be explored by way 

of a center manifold reduction, but we have not pursued this.) 

 

The Jacobian matrix evaluated at points on the “K absent” line has eigenvalues 1 and 

. Again, the first eigenvalue corresponds to neutral stability along the 

direction of the line. The remaining two eigenvalues are easily seen to have modulus less than or equal 

to one for 0 ≤ x3 ≤ 1, with the larger of the two attaining the value of one when x3 = 1. For points with 

0 ≤ x3 < 1, the line is attracting. We note that x3 = 1 corresponds to the point of intersection of the “R 



fixed” and “K absent” lines of equilibria, which occurs at the point (0, 0, 1, 0), where R is fixed and K 

is absent. 

 

Since the wild-type population has genotype kkrr and our introduced individuals have genotype 

KKRR, the initial conditions to be considered correspond to a pure mixture of kr and KR gametes, i.e. 

the line x1 + x4 = 1. (In all of what follows, we use the term “initial conditions” to denote points on this 

line, rather than a general initial condition of the system.) In the long run, numerical simulation shows 

that trajectories started from initial conditions on this line approach equilibria that are either on the “R 

fixed” or “K absent” lines. One such trajectory approaches the intersection point of these lines (i.e. the 

point where R is fixed and K is absent): the initial condition that gives rise to this trajectory represents 

a threshold introduction level that separates these two outcomes. An analytic calculation of this 

threshold appears to be difficult, given that it requires the calculation of a complete trajectory of the 

nonlinear system. Numerical simulation gives this threshold introduction level as approximately 

x1=0.350. 

 

Figure S4. summarizes the behavior of the system in this case. The initial conditions lie on the solid 

black line. The gamete frequencies in successive generations are depicted as dots, with lines joining 

the dots to aid visualization of the trajectories. The “R fixed” line of equilibria is shown as a solid 

green line (points on this line represent mixtures of KR and kR), and the “K absent” line of equilibria 

as a solid red line (points on this line represent mixtures of kR and kr). Trajectories are colored red or 

green, according to which of these two outcomes occurs in the long term.  



 
Figure S4. Trajectories of the system in the no cost case. As discussed in the text, the gamete 

frequencies in successive generations are depicted as dots, with lines joining the dots to aid 

visualization of the trajectories. The “R fixed” line of equilibria is shown as a solid green line (points 

on this line represent mixtures of KR and kR), and the “K absent” line of equilibria as a solid red line 

(points on this line represent mixtures of kR and kr).  Trajectories are colored red or green, according 

to which of these two outcomes occurs in the long term. Initial conditions lie on the solid black line. 

 

 



B. Cost for Rescue alone (cK1 = cK2 = 0 , cR2 > 0) 

In this case, analytic expressions for the equilibria can be found for all values of cR1 and cR2.  

1. R fixed line of equilibria: x1 + x3 = 1, 

2. Both K and R absent equilibrium point: (0, 0, 0, 1), i.e. kr only. (This is an endpoint of the 

K absent line from the previous case.) 

3. KR/Kr mixture equilibrium point: . This isolated 

equilibrium has KR and Kr alone: the K allele is fixed. If cR1 = cR2 then this equilibrium has 

just KR (it is an endpoint of the R fixed line). 

4. (b, b, -b, 1-b), where b = . It is easy to see that these two equilibria are not 

biologically feasible, since b is non-zero when 0 ≤ cR1 ≤ 1.  

 

The eigenvalues for points on the “R fixed” line of equilibria are 1, (1- cR1)/(1- cR2) and  

(1/2)(1- cR1)/(1- cR2). The first eigenvalue corresponds to neutral stability along the direction of the 

line. There are two possible cases: (a) cR2 > cR1, or cR2 = cR1. 

(a) If cR2 > cR1, then the second eigenvalue is greater than one and the equilibria are unstable.  

(b) If cR2 = cR1, then the second eigenvalue equals one and the third eigenvalue equals ½: linear 

stability analysis is inconclusive in this case, although numerical simulation suggests that the line is 

attracting. As before, it may be possible to carry out a nonlinear analysis to verify this, likely by way of 

a center manifold approach, but we do not pursue this here. 

 

The eigenvalues for the “both K and R absent” equilibrium are 0, 1-cR1 and (1- cR1)/2. There are two 

possible cases: (a) cR1 > 0, or (b) cR1 = 0. 

(a) This equilibrium is stable when cR1 > 0.  

(b) Linear stability analysis is inconclusive when cR1 = 0, but the following nonlinear analysis shows 

that the equilibrium remains stable. We consider a small region inside the biologically relevant region 

that is close to the equilibrium point, so that x1, x2 and x3 are all small. We can show that trajectories 

approach the “K absent” line, x3 + x4 = 1, by considering the distance of successive iterates from this 

line: this distance is given by x1
2 + x2

2. The distance of the next iterate from the line, i.e. x1′ 2 + x2′ 2, 

can then be calculated using the governing equations. A second order Taylor series expansion in x1, x2 

and x3 gives this new distance (to leading order) as ½x1
2: successive iterates indeed move closer to the 

line if x1 > 0. If x1 = 0, we have to retain more terms in our Taylor expansion; the first non-zero term is 



½x2
2x3

2 and so we see iterates move closer to the line in this case also. Points on the “K absent” line, 

x3 + x4 = 1, can be seen to approach the “both K and R absent” equilibrium, (0, 0, 0, 1). For a point on 

the “K absent” line, the dynamics are described by equation (3), which, in this case, gives 

 

For cR2 > 0 and 0 < x3 < 1, the term multiplying x3 is less than one, so x3 decreases towards zero: points 

move towards the equilibrium. The equilibrium, therefore, is seen to be stable. 

 

 

The “KR/Kr mixture” equilibrium has eigenvalues 1, (1- cR2)/ (1- cR1) and (1/2)(1- cR2)/ (1- cR1). Recall 

that this equilibrium is of interest when cR2 > cR1 (otherwise it is an endpoint of the “R fixed” line of 

equilibria already discussed). We notice that the second eigenvalue is the reciprocal of the second 

eigenvalue of equilibrium 1: it is less than one if cR2 > cR1 and equals one when cR2 = cR1. The third 

eigenvalue is always less than one. Linear stability analysis is inconclusive, but numerical simulations 

suggest that the equilibrium is unstable in the cR2 > cR1 case of interest. 

 

The phase portrait looks quite different depending on whether we have cR2 = cR1 (figure S5, dominant 

fitness cost) or cR2 > cR1 (figure S6). When the fitness cost is dominant, there are two possible 

outcomes, with either R becoming fixed or R being lost. There is a threshold introduction level of KR 

that separates these two outcomes, with the level of the threshold depending on the fitness cost. As the 

fitness cost approaches zero, the threshold value approaches that seen in the no cost case. When the 

fitness cost is not dominant (figure 3), we see that almost every trajectory from our initial conditions 

leads to the equilibrium at which both K and R are lost (i.e. kr only). 



 

 
Figure S5. Trajectories of the system when there are strictly dominant costs to the Rescue allele, 

but no costs to the Killer allele. Rescue costs are given by cR2 = cR1 = 0.1. There is a stable 

equilibrium at which both Killer and Rescue are absent, i.e. all kr, shown by the filled magenta circle. 

The “Rescue fixed” line of equilibria (i.e. points are mixtures between kR and KR) is shown in green. 

A trajectory starting at any the initial conditions either approaches the “both K and R absent” (all kr) 

equilibrium or the “Rescue fixed” line of equilibria. Trajectories are colored to indicate their eventual 

fate. The position of the threshold that separates these two types of trajectories depends on the value of 

the cost. For higher costs, the threshold moves further away from the “both K and R absent” (all kr) 

equilibrium. As the cost approaches zero, the threshold moves towards the value seen in the earlier no 

cost case. 



 
Figure S6. Trajectories of the system when there are costs to the Rescue allele, with cR2 > cR1, but 

no costs to the Killer allele. Rescue costs are given by cR1 = 0, cR2 = 0.1. There is a stable equilibrium 

at which both Killer and Rescue are absent, i.e. all kr, shown by the filled magenta circle. There is an 

unstable fixed point (the “KR/Kr mixture” equilibrium) on the KR axis, shown as an unfilled black 

circle. The “Rescue fixed” line of equilibria (i.e. points are mixtures between kR and KR) is shown in 

green; this line is repelling. Except for the initial condition with all KR, trajectories starting at all other 

initial conditions approach the all kr equilibrium. These trajectories are seen to approach a curve as 

they move towards the all kr equilibrium. This curve appears to originate at the unstable equilibrium 

on the KR axis.  



C. Cost for Killer allele alone (cR1 = cR2 = 0, cK2 > 0) 

 

For general choices of cK1 and cK2, the following equilibria were found: 

1. Both K and R fixed equilibrium point: (1, 0, 0, 0), i.e. all KR, 

2. K absent line of equilibria: x3 + x4 = 1, 

3. KR/kR mixture equilibrium point:  

There are three possible cases: (a) 0 < cK1 < cK2, (b) 0 < cK1 = cK2, or (c) 0 = cK1 < cK2. 

(a) If cK1 is positive and not equal to cK2, this equilibrium is not biologically relevant since the 

product of the first two components is equal to . The value of this 

product is negative, since cK2 > cK1, and so one component of the equilibrium must be negative. 

(b) Two cases remain: if cK1 is positive and equals cK2, we see that this equilibrium coincides 

with the “both K and R fixed” equilibrium. 

(c) If cK1 equals zero, this equilibrium is at (0, 0, 1, 0), i.e. K absent and R fixed. This point 

coincides with an endpoint of the “K absent” line of equilibria. 

Taken together, (a), (b) and (c) mean that we need not consider this equilibrium separately. 

4. Four further equilibria exist. A quartic polynomial can be found whose four solutions are the 

values taken by one component (e.g. x2) of the equilibrium. The values of the remaining 

components can be given in terms of this component, although these expressions are 

complicated. In general, this polynomial does not have a simple solution and, given the 

complexity of the expression for the equilibria  (the output from Maple contains almost 

100 000 terms) we do not show the solution here. Numerical exploration of these solutions 

suggests that they are often biologically irrelevant since once or more components are often 

either negative or complex.  

 

 

The eigenvalues of the Jacobian matrix evaluated at the “both K and R fixed” equilibrium are 1, 

 and . There are two possible cases: (a) cK2 > cK1, or (b) cK2 = cK1.  

(a) The second eigenvalue is greater than one if cK2 > cK1: the equilibrium is unstable. 



(b) If cK2 = cK1, linear stability analysis is inconclusive, but a simple analysis shows that the 

equilibrium is again unstable.  Writing the common cost as cK, use of equation (2) shows that the 

dynamics on the invariant “R fixed” line are given by 

 

The factor in parentheses that multiplies x3 is greater than one for 0 < x3 < 1, so the value of x3 

increases. In particular, successive iterates move away from the “both K and R fixed” equilibrium at 

(1, 0, 0, 0). The equilibrium point is, therefore, unstable. (More specifically, we see that the value of x3 

will approach one: points on the “R fixed” line approach the “K absent and R fixed” point, i.e. the 

intersection of the “R fixed” invariant line and the “K absent” line of equilibria.) 

 

The eigenvalues of the Jacobian matrix evaluated at points on the “K absent” line are 1 and 

. There is neutral stability along the direction of the line and the 

remaining two eigenvalues have modulus less than or equal to one for 0 ≤ x3 ≤ 1, with the larger 

attaining the value of one if x3 equals one and cK1 equals 0. For points with 0 ≤ x3 < 1, the line is 

attracting. 

 

The qualitative behavior of the system is the same in all cases here: provided that the initial condition 

is not at the unstable “all KR” equilibrium, the trajectory approaches the “K absent” line, x3 + x4 = 1: 

the killer allele is lost (figure S7). 



 

 
Figure S7. Trajectories of the system when there are costs to the Killer allele but not to the 

Rescue allele. cK1 = 0, cK2 = 0.05, cR1 = cR2 = 0. There is an unstable “all KR” (K and R both fixed) 

equilibrium (open green circle) and an attracting “K absent” line of equilibria (solid red line, points on 

which are a mixture of kR and kr). All trajectories that start away from the unstable equilibrium 

approach the “K absent” line. 



D. Costs to both Killer and Rescue. Costs taken to be additive between loci. 

 

The difficulties we had in finding analytic solutions in the Killer cost only case were compounded 

here. Maple was unable to find all equilibrium solutions for general values of the fitness costs. We did 

find, however, three equilibria that were common to all cases: 

1. Both K and R absent equilibrium: (0, 0, 0, 1), i.e. all kr. 

2. K absent and R fixed equilibrium: (0, 0, 1, 0), i.e. all kR. 

3. Both K and R fixed equilibrium: (1, 0, 0, 0), i.e. all KR. 

We shall first discuss the stability of these equilibria. 

 

The equilibrium at which both K and R are absent has eigenvalues 0, 1-cR1 and (1- cR1- cK1)/2.  

(a) If cR1 > 0, this equilibrium is stable.  

(b) When cR1 = 0, the second eigenvalue equals one and so the linear stability analysis is inconclusive. 

The eigenvector corresponding to this eigenvalue is in the direction of the “K absent” invariant line, 

x3 + x4 = 1, so to show stability in this case we must demonstrate that points on this line move towards 

the equilibrium. As before, equation (3) shows that the governing equations reduce to a single equation 

for one component 

 

For 0 < x3 < 1, we see that the factor in parentheses multiplying x3 is less than one, i.e. the x3 

component of successive iterates of points on the line decreases. Iterates thus move towards the “both 

K and R absent” equilibrium, (0, 0, 0, 1), which is therefore stable. 

 

The equilibrium at which K is absent and R is fixed has eigenvalues , and 

. There are two possible cases: either (a) cR2 > cR1, or (b) cR2 = cR1. 

(a) The second eigenvalue is greater than one whenever cR2 > cR1, in which case the equilibrium is 

unstable.  

 



(b) If cR2 = cR1 we can see that the equilibrium remains unstable using the earlier analysis of behavior 

on the “K absent” invariant line, x3 + x4 = 1. Writing the common value of cR1 and cR2 as cR, we get 

 

The factor in parentheses is less than one for 0 < x3 < 1, so the x3 component decreases: points on the 

line move away from the “K absent and R fixed” equilibrium, (0, 0, 1, 0), which is therefore unstable. 

 

The equilibrium for which both K and R are fixed has eigenvalues ,  and 

. The first eigenvalue is greater than one if cK2 > cK1, and equals one if these two costs 

are equal. Similarly, the second eigenvalue is greater than one if cR2 > cR1, and equals one if these two 

costs are equal. This means that this equilibrium is guaranteed to be unstable unless both fitness costs 

are dominant. If both fitness costs are dominant, the equilibrium can still be seen to be unstable by 

considering the behavior on the “R fixed” invariant line, x1 + x3 = 1. Equation (2) gives 

 

Here cR is the cost for being either heterozygous or homozygous for R and cK is the corresponding cost 

for K; both of these constants are positive. For 0 < x3 < 1, we see that the factor in parentheses 

multiplying x3 is greater than one, which means that points on the line move away from the “both K 

and R fixed” equilibrium, (0, 0, 0, 1), which is therefore unstable. 

 

There are other equilibria beyond these three. We only managed to make progress on locating their 

position in the special case in which cK1 = cK2 = cR1 = cR2, i.e. equal, dominant fitness costs for Killer 

and Rescue, when we obtain 

4. Six further equilibria, found in terms of the solution of a sixth degree polynomial. (The 

polynomial is not as complex as in the general killer cost case, but perhaps this is unsurprising 

as we only have one independent parameter here but had two there.) 

 

When there are fitness costs for both killer and rescue, taken to be additive between loci, trajectories 

started at almost every initial condition (i.e. except for the unstable “both K and R fixed” equilibrium) 

approach the “K and R both absent” equilibrium, i.e. both killer and rescue are lost (figure S8). 



Ultimately, trajectories approach this equilibrium along the “K absent” line (i.e. the killer allele has 

been lost first), although some trajectories—those with a sufficiently high initial frequency of KR—

first approach and then move along the “R fixed” line before doing so (i.e. R comes close to fixation, 

but does not attain it, only to be lost later on). 

 
Figure S8. Behavior of the system when both killer and rescue alleles have a cost. Parameter 

values are cR1 = 0.2, cR2 = 0.2, cK1 = 0.005, and cK2 = 0.005. The “both K and R fixed” equilibrium 

(open black circle) is unstable, as is the “R fixed and K absent” equilibrium (open green circle). The 

“both K and R absent” equilibrium (all kr: filled magenta circle) is stable. Trajectories from all initial 

conditions (except the “all KR” equilibrium) approach the “both K and R absent” (i.e. all kr) 

equilibrium: both killer and rescue alleles are lost. 



VI. Allele Frequency Trajectories 

A convenient alternative formulation of the model, mathematically equivalent to the iterative equations 

given above, is framed in terms of the frequencies of the K and R alleles, which we write as q and p, 

and the linkage disequilibrium, D. These three quantities can be written in terms of the gamete 

frequencies as follows (see, for example, Hartl and Clark 1997) 

 

In turn, the allele frequencies can be expressed in terms of p, q and D: 

 

The iterative equations for the allele frequencies can be rewritten to give iterative equations for p, q 

and D. If there are no fitness costs, the following set of equations is obtained 

 (5) 

Here, W is the mean fitness, which equals 1-2x2x4-x2
2 in terms of gamete frequencies, or  

1-[(1-p)q-D][(1-p)(2-q)+D] in terms of allele frequencies. 

 

Earlier we depicted trajectories of the system using three-dimensional gamete frequency plots. 

Equivalent plots in (p, q, D) space could be presented, but almost all the information presented by such 

figures can be conveyed using simpler two-dimensional plots that depict the allele frequency 

trajectories in the (q, p) plane.  

 

The allele frequency trajectories in the no cost case are presented in Figure S9. Because KKRR 

homozygotes are introduced, the initial point of each trajectory has p equal to q, and so lies on the 

diagonal line p = q, which we depict as a solid black line. Initial conditions and trajectories that 

ultimately lead to fixation of R are shown in green, and those that lead to the extinction of K are shown 

in red.  



 

 
Figure S9. (Shown as Figure 2 in the main text.) Allele frequency trajectories following release of 

Killer-Rescue homozygotes at a number of different initial frequencies. The fitness costs of K and 

R are set at zero. The allele frequencies in successive generations are depicted as dots, with lines 

joining the dots to aid visualization of the trajectories. (The closer dots are along a line, the less change 

there is in allele frequencies per generation, so, as equilibrium is approached, the dots appear to 

overlap). The R fixed line of equilibria is shown as a solid green line, and the K absent line of 

equilibria as a solid red line.  Trajectories are colored red or green, according to which of these two 

outcomes occurs in the long term. Initial conditions lie on the solid black line. 



For completeness, we present plots (Figures S10 through S13) of allele frequency trajectories 

corresponding to the fitness costs depicted in Figures S5 through S8. In each case we see that both 

allele frequencies change by the same amount in the first generation: the initial movement of each 

trajectory is along the diagonal p = q.  

 
Figure S10. Allele frequency trajectories when there are costs to the Rescue allele, but no costs to 
the Killer allele. Rescue costs are given by cR2 = cR1 = 0.1. There is a stable equilibrium at which both 
Killer and Rescue are absent, shown by the filled magenta circle. The “Rescue fixed” line of equilibria 
is shown in green. A trajectory starting at any of the initial conditions either approaches the “both K 
and R absent” equilibrium or the “Rescue fixed” line of equilibria. Trajectories are colored to indicate 
their eventual fate. The position of the threshold that separates these two types of trajectories depends 
on the value of the cost. For higher costs, the threshold moves further away from the “both K and R 
absent” equilibrium. As the cost approaches zero, the threshold moves towards the value seen in the 
earlier no cost case. 



 
Figure S11. Allele frequency trajectories when there are costs to the Rescue allele, with cR2 > cR1, 

but no costs to the Killer allele. Rescue costs are given by cR1 = 0, cR2 = 0.1. There is a stable 

equilibrium at which both Killer and Rescue are absent, shown by the filled magenta circle. There is an 

unstable fixed point at which K is fixed but the frequency of R lies between 0 and 1, shown as an 

unfilled black circle. The “Rescue fixed” line of equilibria is shown in green; this line is repelling. 

Except for the initial condition with K and R both fixed, trajectories starting at all other initial 

conditions approach the equilibrium at which both K and R are absent. These trajectories are seen to 

approach a curve as they move towards this equilibrium; this curve appears to originate at the unstable 

equilibrium.  



 
Figure S12. Allele frequency trajectories when there are costs to the Killer allele but not to the 

Rescue allele. cK1 = 0, cK2 = 0.05, cR1 = cR2 = 0. There is an unstable equilibrium at which both K and 

R are fixed (open green circle) and an attracting “K absent” line of equilibria. All trajectories that start 

away from the unstable equilibrium approach the “K absent” line. 



 
Figure S13. Allele frequency trajectories when both killer and rescue alleles have a cost. 

Parameter values are cR1 = 0.2, cR2 = 0.2, cK1 = 0.005, and cK2 = 0.005. The “both K and R fixed” 

equilibrium (open black circle) is unstable, as is the “R fixed and K absent” equilibrium (open green 

circle). The “both K and R absent” equilibrium (filled magenta circle) is stable. Trajectories from all 

initial conditions (except the “both K and R fixed” equilibrium) approach the “both K and R absent” 

equilibrium: both killer and rescue alleles are lost. As noted earlier, even though the ultimate fate is 

loss of both K and R, there can be a long transient period in which the rescue allele is present at a high 

frequency. 



VII. Introduction Threshold Analysis for the No Fitness Costs Case and the Dominant Rescue-

Only Cost Case 

 

When there is no fitness cost to either K or R, we notice that many of the trajectories in Figure S9 are 

close to being linear. This observation provides a way to obtain an approximate value for the threshold 

introduction level whose resulting trajectory separates the (q, p) plane into regions in which trajectories 

have qualitatively different outcomes. By examining the allele frequencies over the first two 

generations, we can calculate the direction in which a trajectory leaves the diagonal line p = q.  If the 

introduced fraction is f, then, at the initial time (generation zero) we have that p = q = f  and 

D = f (1 - f ).  In the first generation, use of the iterative equations shows that we have p' = q' = f  and 

D' = f (1 - f )/2: in this generation, the allele frequencies don’t change (because all individuals are 

homozygotes there is no killing of offspring and hence no selection), although the linkage 

disequilibrium does.  

 

A second application of the iterative equations gives the F2 allele frequencies as 

 (6) 

The slope of the trajectory leaving the initial point can then be calculated as 

. (7) 

In order for a straight line with this slope to leave the point (f, f ) and arrive at the corner (0,1), it must 

have slope (1- f )/(-f) and so we have 

 (8) 

Rearranging gives f to be the solution of the quadratic 

 (9) 

This equation has roots 3±√7, and, since f is between 0 and 1, the relevant solution is f = 3 –√7 ≈ 0.354, 

which is a slight overestimate of the value of 0.350 calculated by numerical simulation of the model. 

 



When there are costs to the rescue construct alone and the rescue cost is dominant, we again have an 

introduction threshold that separates two qualitatively different outcomes (R fixed vs. both K and R 

lost). When the fitness cost is not close to zero (as in Figure S10), we see that the trajectories in the 

vicinity of the threshold are far from linear. This prevents us from using the earlier straight-line 

description to find the approximate value of the introduction threshold. When the fitness cost is small, 

however, the trajectories in the vicinity of the threshold can again be reasonably approximated by 

straight lines (see Figure S14). The first motion of the trajectory is, as discussed before, along the 

diagonal line p = q, from the point (p , q) = (f , f ) to  (p' , q' ) = (f ' , f ' ), where   

 (10) 

A straightforward calculation gives the direction in which trajectories move between the first and 

second generation as 

 (11) 

Here f is the introduction fraction and cR2 = cR1 = r. Assuming that the trajectory continues to move in a 

straight line with this direction, it will hit the corner at (0,1) if the slope equals (1- f ')/(-f '). This leads 

to the following equation for f 

 (12) 

Figure S15 compares introduction thresholds obtained from (12) to numerical estimates obtained from 

model simulation over a range of values for the fitness cost r. The approximation gives a fair indication 

of the threshold value, although it underestimates the extent to which its value increases as Rescue 

becomes increasingly costly.  



 
Figure S14. Allele frequency trajectories when there is a small dominant Rescue cost, but no cost 

to the Killer allele. Rescue costs are given by cR2 = cR1 = 0.01. Trajectories that are close to the 

introduction threshold approach the corner at (0,1) along nearly straight-line paths (although 

trajectories that start just below the threshold curve away at the last moment as they near the corner). 

This allows an approximate calculation of the introduction threshold, as discussed in the text. 



 
Figure S15. Introduction threshold for the fixation of the Rescue allele in the dominant Rescue 

cost, no Killer cost case, as a function of the Rescue cost, r = cR1 = cR2. Values estimated from 

model simulation are shown as circles, while the approximation obtained from equation (12) is shown 

as the dashed line.  
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