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We consider a simplified model of a social network in which indi-
viduals have one of two opinions (called 0 and 1) and their opinions
and the network connections coevolve. Edges are picked at ran-
dom. If the two connected individuals hold different opinions then,
with probability 1 − α, one imitates the opinion of the other; other-
wise (i.e., with probability α), the link between them is broken and
one of them makes a new connection to an individual chosen at
random (i) from those with the same opinion or (ii) from the net-
work as a whole. The evolution of the system stops when there are
no longer any discordant edges connecting individuals with differ-
ent opinions. Letting ρ be the fraction of voters holding the min-
ority opinion after the evolution stops, we are interested in how ρ
depends on α and the initial fraction u of voters with opinion 1. In
case (i), there is a critical value αc which does not depend on u, with
ρ ≈ u for α > αc and ρ ≈ 0 for α < αc. In case (ii), the transition point
αcðuÞ depends on the initial density u. For α > αcðuÞ, ρ ≈ u, but for
α < αcðuÞ, we have ρðα,uÞ ¼ ρðα,1∕2Þ. Using simulations and approx-
imate calculations, we explain why these two nearly identical
models have such dramatically different phase transitions.

coevolutionary network ∣ quasi-stationary distribution ∣ Wright–Fisher
diffusion ∣ approximate master equation

In recent years, a variety of research efforts from different
disciplines have combined with established studies in social net-

work analysis and random graph models to fundamentally change
the way we think about networks. Significant attention has
focused on the implications of dynamics in establishing network
structure, including preferential attachment, rewiring, and other
mechanisms (1–5). At the same time, the impact of structural
properties on dynamics on those networks has been studied, (6),
including the spread of epidemics (7–10), opinions (11–13), infor-
mation cascades (14–16), and evolutionary games (17, 18). Of
course, in many real-world networks the evolution of the edges
in the network is tied to the states of the vertices and vice versa.
Networks that exhibit such a feedback are called adaptive or coe-
volutionary networks (19, 20). As in the case of static networks,
significant attention has been paid to evolutionary games (21–24)
and to the spread of epidemics (25–29) and opinions (30–35), in-
cluding the polarization of a network of opinions into two groups
(36, 37). In this paper, we examine two closely related variants of
a simple, abstract model for coevolution of a network and the
opinions of its members.

Holme–Newman Model
Our starting point is the model of Holme and Newman (38–41).
They begin with a network of N vertices andM edges, where each
vertex x has an opinion ξðxÞ from a set ofG possible opinions and
the number of people per opinion γN ¼ N∕G stays bounded as N
gets large. On each step of the process, a vertex x is picked at
random. If its degree dðxÞ ¼ 0, nothing happens. For dðxÞ > 0,
(i) with probability α an edge attached to vertex x is selected
and the other end of that edge is moved to a vertex chosen at
random from those with opinion ξðxÞ; (ii) otherwise (i.e., with
probability 1 − α) a random neighbor y of x is selected and we

set ξðxÞ ¼ ξðyÞ. This process continues until there are no longer
any edges connecting individuals with different opinions.

When α ¼ 1, only rewiring steps occur, so once all of the M
edges have been touched, the graph has been disconnected into
G components, each consisting of individuals who share the same
opinion. Because none of the opinions have changed, the com-
ponents are small (i.e., their sizes are Poisson with mean γN).
By classical results for the coupon collector’s problem, this re-
quires approximately M logM updates (see, e.g., ref. 42, p. 57).

In contrast, for α ¼ 0, this system reduces to the voter model
on a static graph. If we suppose that the initial graph is an Erdös–
Rényi random graph in which each vertex has average degree
λ > 1, then (see, e.g., ref. 12, chap. 2) there is a “giant compo-
nent” that contains a positive fraction, μN, of the vertices and
the second largest component is small having only OðlogNÞ ver-
tices; i.e., when N is large, the size will be approximately Cλ logN,
where Cλ is a constant that depends on λ. The voter model on the
giant component will reach consensus in OðN2Þ steps (see, e.g.,
ref. 12, sect. 6.9), so the end result is that one opinion has μN
followers while all of the other groups are small.

Using simulation and finite size scaling, Holme and Newman
showed that there is a critical value αc so that for α > αc all of the
opinions have a small number of followers at the end of the
process, whereas for α < αc “a giant community of like-minded
individuals forms” (38). When the average degree λ ¼ 2M∕N ¼ 4
and the number of individuals per opinion γN → 10, this transi-
tion occurs at αc ≈ 0.46.

Our Model and Simulation Results
The “rewire-to-same”model we study differs from that of Holme
and Newman in two ways: (i) we consider two opinions (called 0
and 1) instead of a number proportional to the size of the graph;
and (ii) on each step, we pick a discordant edge ðx;yÞ at random
rather than a vertex, avoiding the problem of picking vertices with
degree zero or vertices that agree with all of their neighbors. With
probability 1 − α, the voter at x adopts the opinion of the voter at
y. Otherwise (i.e., with probability α), x breaks its connection to y
and makes a new connection to a voter chosen at random from
those that share its opinion. The process continues until there are
no edges connecting voters that disagree.

Despite the differences in implementation, this rewire-to-same
model has a phase transition similar to that of Holme and New-
man. In particular, the final fraction ρ of voters with the minority
opinion undergoes a discontinuous transition at a value αc that
does not depend on the initial density. Fig. 1 shows results of si-
mulations for the rewire-to-same model starting from an initial
graph that is Erdös–Rényi with N ¼ 100;000 vertices and average
degree λ ¼ 4. Opinions are initially assigned randomly with the
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probability of opinion 1 given by u ¼ 0.5, 0.25, 0.1, and 0.05. The
figure shows the final fraction ρ of voters with the minority
opinion from five realizations for each u. For α > αc ≈ 0.43, we
observe ρ ≈ u and for α < αc, ρ ≈ 0.

We also study a “rewire-to-random” variant of this model that
differs from the rewire-to-same model in only one way: x makes
its new connection to a voter chosen at random from all of the
vertices in the graph. This single difference leads to fundamen-
tally different model outcomes, as seen in Fig. 2, showing simula-
tion results for the rewire-to-random model on initially Erdös–
Rényi graphs with N ¼ 100;000 nodes and average degree
λ ¼ 4 for u ¼ 0.5, 0.25, 0.1, and 0.05. When u ¼ 0.5, the fraction
in the minority is constant at 0.5 over ½αcð0.5Þ;1� and then de-
creases continuously to a value near zero as α decreases to zero.

The behavior of our models for α > αc is easy to understand.
As in the case of the Holme and Newman model, we expect con-
sensus to be reached in OðN logNÞ steps when α ¼ 1 and in
OðN2Þ steps when α ¼ 0. We define the boundary between the
fast and slow consensus regimes to be the value of α, where the
average number of steps needed to reach consensus is N3∕2 (any
power between one and two would give the same results when
N → ∞). When an edge is chosen between voters with different
opinions, then a rewiring event does not change the number of
ones, whereas a voting event will increase and decrease the num-
ber of ones with equal probability; i.e., the number of ones is a
random walk that on each step stays constant with probability α.
The central limit theorem implies that when consensus is reached
in OðN3∕2Þ steps, the typical change in the number of ones from
the initial configuration is OðN3∕4Þ. Hence, when the initial frac-
tions of ones is u ≤ 1∕2, the final fraction ρ with the minority opi-
nion will be approximately equal to u.

Turning to the curves in Fig. 2 for u ¼ 0.25, 0.1, and 0.05, we
see that each initial density u has a critical value αcðuÞ, so that for

α > αcðuÞ, we have ρðα;uÞ ¼ u, whereas for α < αcðuÞ, we have
ρðα;uÞ ¼ ρðα;0.5Þ. Because all of the ρðα;uÞ agree with ρðα;0.5Þ
when they are <u, we call the graph of ρðα;0.5Þ on ½0;αcð0.5Þ�
the universal curve. The main goal of this paper is to explain this
phenomenon.

Quasi-Stationary Distributions
Let Ni be the number of vertices in state i. Our first clue to the
reason for a universal curve in the rewire-to-random model came
from Fig. 3, which shows the change over time of the fraction of
vertices with the minority opinion minfN1;N0g∕N and the num-
ber of edges connecting vertices with opposite opinions,N10, for a
simulation in which the initial density of ones is u ¼ 1∕2, α ¼ 0.3,
the number of nodes is N ¼ 1;000, and we start with an Erdös–
Rényi graph with average degree λ ¼ 4. In the visualization
of these results and the theoretical discussions that follow, the
model is considered in continuous time with each edge subject
to change at times of a rate one Poisson process. The sequence
of states visited by the model is the same in discrete or continuous
time, but tM updates correspond to continuous time t. Hence, in
the slow consensus regime, OðN2Þ updates becomes time OðNÞ.

There areM ≈ 2;000 edges in this graph simulated in Fig. 3, so
the initial number of 1-0 edges is approximately 1,000, but the
curve drops very quickly to a value near 600, and then begins
to change more slowly. The second key observation is that the
number of 0-1 edges and the fraction with the minority opinion
minfN1;N0g∕N appear to be strongly correlated. The initial tran-
sient and the reason for the correlation will be seen more clearly
in Fig. 4.

To explain the key insight derived from this simulation, we
recall results for the voter model on the d-dimensional integer
lattice Zd, in which each vertex decides to change its opinion
at rate 1, and when it does, it adopts the opinion of one of its
2d nearest neighbors chosen at random. Let ξtðxÞ be the opinion
of the voter at x at time t. Holley and Ligget (43) and Liggett (44)
proved the following result.

Theorem. In d ≤ 2, the voter model approaches complete consensus;
that is, if x ≠ y then P½ξtðxÞ ≠ ξtðyÞ� → 0. In d ≥ 3, if the voter model
starts from product measure with density p [i.e., ξp0ðxÞ are indepen-
dent and equal to one with probability p], then ξpt converges in dis-
tribution to a limit νp, which is a stationary distribution for the
voter model.
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Fig. 1. Simulation results for rewire-to-same model, starting from Erdös–
Rényi graphs with N ¼ 100;000 nodes and average degree λ ¼ 4.
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Fig. 2. Simulation results for the rewire-to-random model, starting from
Erdös–Rényi graphs with N ¼ 100;000 nodes and average degree λ ¼ 4.
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Fig. 3. Fraction of nodes with the minority opinion (minfN0;N1g∕N) and the
number of discordant edges N10 versus time, for a simulation of N ¼ 1;000
nodes, u ¼ 0.5, and α ¼ 0.3.
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Simulations of the voter model are done on a finite set, typi-
cally the torus ðZmodLÞd. In this setting, the behavior of the
voter model is “trivial” because it is a finite Markov chain with
two absorbing states, all ones and all zeros. As the next result
shows (see Cox and Greven, ref. 45), the voter model has inter-
esting behavior along the road to absorption.

Theorem. If the voter model on the torus in d ≥ 3 starts from product
measure with density p, then at timeNt it looks locally like νθðtÞ where
the density θt changes according to the Wright–Fisher diffusion
process

dθt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βd · 2θtð1 − θtÞ

p
dBt

and βd is the probability that two random walks starting from neigh-
boring sites never hit.

In the next section we will describe conjectures for the evolving
voter model that are analogues of the last theorem. To prepare
for stating our conjectures, note that (i) although the voter model
on the torus does not have a nontrivial stationary distribution,
it does have a one parameter family of “quasi-stationary distribu-
tions” that look locally like νp, and (ii) the quantity under the
square root in the Wright–Fisher diffusion is, by results of Holley
and Liggett (43), the expected value of N10∕M under νθðtÞ.

Conjectures
Our next goal is to use simulation results to formulate the ana-
logues of the Cox and Greven result (45) for our two evolving
voter models, beginning with the more interesting rewire-to-
random case. Fig. 4 shows results from simulations of the system
with α ¼ 0.5. The initial graph is Erdös–Rényi with N ¼ 10;000
vertices and average degree λ ¼ 4. Observations of the pair
ðN1∕N;N10∕MÞ are plotted every 1,000 steps starting from den-
sities u ¼ 0.2, 0.35, 0.5, 0.65, and 0.8. The plotted points converge
quickly to a curve that is approximately (fitting to a parabola)
1.707xð1 − xÞ − 0.1867 and then diffuse along the curve until they
hit the axis near 0.125 or 0.875. Thus the final fraction with the
minority opinion ρ ≈ 0.125, a value that agrees with the universal
curve in Fig. 2 at α ¼ 0.5.

The fact that, after the initial transient, N10∕M is a function of
N1∕N supports the conjecture that the evolving voter model has a
one parameter family of quasi-stationary distributions, for if this
is true, then the values of all of the graph statistics can be com-
puted from N1∕N. To further test this conjecture, we examined

the joint distribution of the opinions at three sites. Let Nijk be the
number of oriented triples x-y-z of adjacent sites having states i, j,
k, respectively. Note for example, in the 010 case, this will count
all such triples twice, but this is the approach taken in the theory
of limits of dense graphs (46), where the general statistic is the
number of homomorphisms of some small graph (labeled by ones
and zeros in our case) into the random graph being studied.

Fig. 5 shows a plot of N010∕N versus N1∕N. After an initial
transient, the observed values stay close to a curve that is well
approximated by a cubic. Simulations of the other Nijk show si-
milar behavior. Because the numbers of 010 triples must vanish
when the number of 1-0 edges do, the fitted cubic shares two
roots with the quadratic approximating the graph of N10∕M ver-
sus N1∕N. This quadratic curve (see again Fig. 4 for α ¼ 0.5) is
fundamental to our understanding of the observed system beha-
vior, and we hereafter refer to it as the “arch.”

The phenomena just described for α ¼ 0.5 also hold for other
values of α. Fig. 6 shows the arches that correspond to
α ¼ 0.1;0.2;…;0.7. Numerical results show that the curves are
well approximated by cαuð1 − uÞ − bα. Let ðvðαÞ;1 − vðαÞÞ be
the “support interval” where the arch has positive values. Simula-
tions show that if u < vðαÞ, then the simulated curve rapidly goes
almost straight down and hits the axis where N10 ¼ 0.

Conjecture 1. In the rewire-to-random model, if α < αcð1∕2Þ and
vðαÞ < u ≤ 1∕2, then starting from product measure with density
u of ones, the evolving voter model converges rapidly to a quasi-
stationary distribution να;u. At time tN, the evolving voter model
looks locally like να;θðtÞ where the density changes according to a gen-
eralized Wright–Fisher diffusion process

dθt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − αÞ½cαθtð1 − θtÞ − bα�

p
dBt

until θt reaches vðαÞ or 1 − vðαÞ.
Here the quantity under the square root is ð1 − αÞN10∕M with

ð1 − αÞ equal to the fraction of steps that are voter steps because
rewiring steps do not change the number of ones.

If Conjecture 1 is true, then the universal curve in Fig. 2 has
ρðα;0.5Þ ¼ vðαÞ for α < αcð0.5Þ. When α is close to αcð0.5Þ,
vðαÞ ≈ 1∕2, so when the evolving voter model hits N10 ¼ 0 both
opinions are held by large groups, and the graph splits into two
giant connected components (that is, their size is proportional to

Fig. 4. Plot of N10∕M versus N1∕N when α ¼ 0.5 in the rewire-to-random
case. Five simulations starting from u ¼ 0.2, 0.35, 0.5, 0.65, and 0.8 are
plotted in different colors. These results are from graphs withN ¼ 10;000 ver-
tices and plotted every 1,000 steps.

Fig. 5. Plot of N010∕N versus N1∕N when α ¼ 0.5 in the rewire-to-random
case. All simulations start at u ¼ 0.5 because multiple runs from one starting
point are enough to explore all of the arch. These results are from graphs
with N ¼ 100;000 vertices and plotted every 10,000 steps.
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N for large graphs). Fig. 7 visualizes a network shortly before this
“graph fission” for α ¼ 0.65.

Though the nature of the phase transition looks different in the
rewire-to-same model, the underlying picture is the same. Fig. 8
shows arches computed from simulations for the rewire-to-same
model that correspond to the ones in Fig. 6 for the rewire-to-ran-
dom model. However, now all the arches have the same support
interval, (0,1), and the formulas in that figure show that the
curves are well approximated by cαuð1 − uÞ for different values
of cα.

In the rewire-to-same case, Vazquez et al. (40) noticed that the
fraction of active links N10∕M plotted versus the fraction of ones
converged rapidly to an arch and then diffused along it (see
ref. 40, figure 4). However, they did not formulate the following:

Conjecture 2. In the rewire-to-same model, the behavior is as de-
scribed in Conjecture 1 but now bα ¼ 0, so αc is independent of
the initial density u, and for α < αc, ρ ≈ 0.

Approximate Calculations
Our next question is why is there a difference in the behavior of
the support intervals of the arches in the two models? Consider
first the rewire-to-random model. By considering all of the pos-
sible changes, one can write differential equations for the graph
statistics. For example,

dN10

dt
¼ −ð2 − αÞN10 þ ð1 − αÞ½N100 −N010 þ N110 −N101�:

To be mathematically precise, for any T < ∞ this holds for t ≤ T
in the limit as the number of vertices tends to∞. Thus these equa-
tions describe the initial behavior (i.e., as the evolving voter mod-
el converges to the arch of quasi-stationary distributions) and
their equilibria as a function of u describe the arch itself.

Note that the derivatives of the two-vertex quantities Nij in-
volve two or three vertices. Derivatives of three-vertex quantities
involve up to four vertices. To be able to solve the equations, we
need some approximation to close the equations. In physics
and ecology (see ref. 47 and references therein), it is common
to use the pair approximation (PA), which in essence assumes
the equilibrium state is a Markov chain: N100 ¼ N10N00∕N0. A
little algebra then shows (see SI Materials for more details about
the results in this section) that, for u ∈ ð0;1∕2�,

αcðuÞ ¼
λ − 1

λ − 1þ u2 þ ð1 − uÞ2 : [1]

When λ ¼ 4, αcð1∕2Þ ¼ 6∕7 and αcðuÞ → 3∕4 as u → 0, so the pre-
dicted fraction ρ with the minority opinion at the end rises from
zero to one-half on ½3∕4;6∕7�. Fig. 9 compares the predicted value
of ρ with simulations in Fig. 2 and shows the agreement is
very poor.

One gets much better estimates of ρ from the approximate
master equation (AME) framework introduced in ref. 48 to
analyze binary state dynamics such as epidemic models. Here
we follow the approach in refs. 49. Let S̄k;mðtÞ [Īk;mðtÞ] be the
number of nodes at time t that are in state 0 (susceptible) [in
state 1 (infected)], have degree k, and havem neighbors in state 1.

Fig. 6. Observed arches for the rewire-to-randommodel. The specified para-
bolas are fits to simulation data with N ¼ 10;000, λ ¼ 4.

Fig. 7. Visualization of the rewire-to-random model soon before fission
occurs, for N ¼ 500 nodes, average degree λ ¼ 4, and α ¼ 0.65. Colors corre-
spond to the two opinions.

Fig. 8. Observed arches for rewire-to-same model. The specified parabolas
are fits to simulation data with N ¼ 10;000, λ ¼ 4.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n 
in

 M
in

or
ity

 S
ta

te

simulation (u=0.5)
Approx Master Eqn
Pair Approximation
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To describe the logic behind the AME, let x be a vertex and let
y be one of its neighboring vertices. Three types of things can hap-
pen: (i) rewiring may break the connection between x and y or
bring a new edge to connect to x; (ii) x or y may influence the
other by a voting step; or (iii) the opinion of y may be changed
by imitating one of its neighbors z ≠ x.

Exact equations can be written for the first two types of events
in terms of S̄k;m and Īk;m, but the third type requires an approx-
imation. For example, if x and y are both in state 0, we postulate
that y changes from zero to one at rate N001∕N00, the expected
number of 1 neighbors of a 0-0 edge. This reasoning is similar to
the PA, but now we do not suppose that N001∕N00 ¼ N01∕N0,
which, if numerical results are accurate, approximates the ratio
of two cubic by a quadratic over the density u. Instead, we use
identities such as

∑
k;m

ðk −mÞmS̄k;m ¼ N001 and ∑
k;m

mS̄k;m ¼ N01

to compute the evolution ofN001∕N00 and other similar terms. As
shown in Fig. 10, the AME gives a better approximation of the
final minority fraction ρ than the PA.More importantly, the AME
gives the correct qualitative behavior: the predicted ρðαÞ > 0 for
all α > 0 and tends to zero as α → 0.

One can repeat the analysis described above for the rewire-to-
same model. Using the PA, we conclude that αc ¼ ðλ − 1Þ∕λ and
the arches N10∕N ¼ uð1 − uÞ½λ − 1∕ð1 − αÞ� always span (0,1).
This qualitative behavior agrees with Fig. 8, but the PA estimate
of αc ¼ 3∕4 when λ ¼ 4 drastically overestimates the value αc ≈
0.43 that comes from simulation (see Fig. 1). Again, one can nu-
merically solve differential equations to employ the AME. The
computed arches span (0,1) but the numerical predictions of ρ
and the estimate of αc are more accurate. See SI Materials for
details of the application of the PA and AME to both models.

Discussion
We have considered a model in which the opinions of individuals
and network structure coevolve. Based on a combination of simu-
lation and approximate calculations we conclude that (i) there is a
discontinuous transition in the rewire-to-same model, similar to
that in Holme and Newman (38), which occurs at an αc indepen-
dent of the initial fraction u of ones; and (ii) there is a continuous
transition in the rewire-to-random model at the critical value
αcðuÞ that depends on u, and the curves for the final fraction
ρðα;uÞ of voters in the minority agree with ρðα;1∕2Þ for α < αcðuÞ.

Thus, a small change in the dynamics of the model results in a
large change in the qualitative behavior and in a manner that we
find counterintuitive. One would think that the rewire-to-same
dynamic would result in a more rapid division of the population
into two noninteracting groups with different opinions. The cri-
tical value for the amount of rewiring αc needed to produce rapid
disconnection is smaller in the rewire-to-same case than αcð1∕2Þ
for the rewire-to-random. Moreover, in the rewire-to-same case,
the size of the minority opinion shrinks to almost zero for α < αc,
whereas in the rewire-to-random case, the group fissions into two,
leaving a significant minority group.

Calculations based on the approximate master equation repro-
duce the qualitative behavior of the phase transition. However, it
would be nice to derive results directly from the exact differential
equations and in a way that gives some insight into the mechan-
isms underlying the differences between the two models.
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SI Methods
Notation.N1 is the number of vertices in state 1. Nij is the number
of oriented i − j edges, so N10 ¼ N01 and N11 counts each unor-
iented 1-1 edge twice. Ni;j;k is the number of oriented triples x-y-z
having states i, j, k. For symmetric strings such as 0-1-0, all in-
stances are counted twice. The fact that this notation is more nat-
ural than dividing by 2 to eliminate overcounting, can be seen by
observing that, if dðxÞ is the degree of x,

∑
i;j

Nij ¼ ∑
x

dðxÞ ∑
i;j;k

Nijk ¼ ∑
x

dðxÞ dðxÞ − 1½ �:

Differential Equations. Consider first the rewire-to-random model
and let u ¼ N1∕N be the initial fraction of vertices in state 1. By
considering all of the possible changes, one arrives at the follow-
ing differential equations:

dN10

dt
¼ −ð2 − αÞN10 þ ð1 − αÞ½N100 −N010 þ N110 −N101�

1

2

dN11

dt
¼ 1 − αð1 − uÞ½ �N10 þ ð1 − αÞ½N101 −N011�

1

2

dN00

dt
¼ ð1 − αuÞN10 þ ð1 − αÞ½N010 −N100�:

[S1]

Here we have used the fact that in the initial phase modeled by
these differential equations N1 ≈ Nu and N0 ≈Nð1 − uÞ. We
have N11 þ 2N10 þ N00 ¼ M, so the sum of the three differential
equations is zero.

Rewire-to-RandomModel, Pair Approximation.The calculations pre-
sented here were inspired by similar equations in Kimura and
Hayakawa (1). Omitting the first equation from [S1], which is re-
dundant,

1

2

dN11

dt
¼ ½1 − αð1 − uÞ�N10 þ ð1 − αÞ½N101 −N011�;

1

2

dN00

dt
¼ ð1 − αuÞN10 þ ð1 − αÞ½N010 −N100�:

Using these two equations and the pair approximation,

½1 − αð1 − uÞ�
1 − α

N10 ¼
N01N11

uN
−

N10N01

ð1 − uÞN
ð1 − αuÞ
1 − α

N10 ¼
N10N00

ð1 − uÞN −
N01N10

uN
;

which leads to the equations

N11

uN
−

N10

ð1 − uÞN ¼ 1þ αu
1 − α

[S2]

and

N00

ð1 − uÞN −
N10

uN
¼ 1þ αð1 − uÞ

1 − α
: [S3]

Adding uN times [S2] to ð1 − uÞN times [S3], we have

N11 þ N00 −
�

u
1 − u

þ 1 − u
u

�
N01 ¼

�
1þ u2 þ ð1 − uÞ2½ �α

1 − α

�
N:

[S4]

When N01 ¼ 0, we have N11 þ N00 ¼ λN and solving gives

αcðuÞ ¼
λ − 1

λ − 1þ u2 þ ð1 − uÞ2 :

When u ¼ 1∕2 and λ ¼ 4, we get αc ¼ 3∕3.5 ¼ 6∕7. As
u → 0, αcðuÞ → ðλ − 1Þ∕λ ¼ 3∕4.

Similarly, using [S4] with N11 þ N00 ¼ λN − 2N01 we have

λN − 2N01 −
�

u
1 − u

þ 1 − u
u

�
N01 ¼

�
1þ u2 þ ð1 − uÞ2½ �α

1 − α

�
N:

[S5]

A little algebra gives

2þ u
1 − u

þ 1 − u
u

¼ 2u − 2u2 þ u2 þ 1 − 2uþ u2

uð1 − uÞ ¼ 1

uð1 − uÞ :
[S6]

Rearranging [S5] and using [S6] gives

�
λ − 1 −

u2 þ ð1 − uÞ2½ �α
1 − α

�
N ¼ 1

uð1 − uÞN01;

and solving we get the pair approximation for the arch:

N01

N
¼ uð1 − uÞ

�
λ − 1 −

u2 þ ð1 − uÞ2½ �α
1 − α

�
:

Note that, as α decreases from αcð1∕2Þ ¼ ðλ − 1Þ∕ðλ − 1∕2Þ to
ðλ − 1Þ∕λ, the arch expands from a point to a curve that
spans (0,1).

Rewire-to-Same Model, Pair Approximation. In this case, the differ-
ential equations are

1

2

dN11

dt
¼ N10 þ ð1 − αÞ½N101 −N011�;

1

2

dN00

dt
¼ N10 þ ð1 − αÞ½N010 −N100�:

Using these equations and the pair approximation as before,

1

1 − α
N10 ¼

N01N11

uN
−

N10N01

ð1 − uÞN
1

1 − α
N10 ¼

N10N00

ð1 − uÞN −
N01N10

uN
;

which leads to the equations

N11

uN
−

N10

ð1 − uÞN ¼ 1

1 − α
[S7]

and
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N00

ð1 − uÞN −
N10

uN
¼ 1

1 − α
: [S8]

Adding uN times the first to ð1 − uÞN times the second, we have

N11 þ N00 −
�

u
1 − u

þ 1 − u
u

�
N01 ¼

N
1 − α

: [S9]

When N01 ¼ 0, we have N11 þ N00 ¼ λN, giving 1 − αc ¼ 1∕λ or

αc ¼ 1 −
1

λ
¼ λ − 1

λ
:

Using [S9] with N11 þ N00 ¼ λN − 2N01 and the algebra in [S6]
yields

λ − ð1 − αÞ−1½ �N ¼ N01

uð1 − uÞ

and the following approximation for the arch

N01

N
¼ uð1 − uÞ

�
λ −

1

1 − α

�
:

Approximate Master Equations
Rewire-to-Random Version. The approximate master equation for
the susceptible sites is

d
dt
S̄k;m ¼ αf−ð2 − uÞmS̄k;m þ ð1 − uÞðmþ 1ÞS̄k;mþ1

þ ðmþ 1ÞS̄kþ1;mþ1g
þ αN01½−2S̄k;m þ S̄k−1;m−1 þ S̄k−1;m�∕N
þ ð1 − αÞ½−mS̄k;m þ ðk −mÞĪk;m�
þ ð1 − αÞ½−βSðk −mÞS̄k;m þ βSðk −mþ 1ÞS̄k;m−1

− γSmS̄k;m þ γSðmþ 1ÞS̄k;mþ1�;
[S10]

where

βS ¼
∑
k;m

ðk −mÞmS̄k;m

∑
k;m

ðk −mÞS̄k;m
¼ N001

N00

γS ¼
∑
k;m

ðk −mÞ2 Īk;m

∑
k;m

ðk −mÞĪk;m
¼ N010

N01

þ 1.

Here βS gives the expected number of 1 neighbors of a 0–0 edge.
For a vertex in state 0 with j neighbors in state 0, the number of
oriented 0-1-0 containing it is jðj − 1Þ. Thus, N010∕N01 gives the
expected number of zero neighbors of the 1 at the end of a 0–1
edge, and the þ1 in the definition of γS counts the zero on the
conditioning edge.

The approximations for the arches reported in Fig. 10 in the
main text are obtained by numerically solving the system to steady
state. Mathematica’s NDSolve function was used starting with a
Poisson degree distribution of mean degree λ ¼ 4, vertices inde-
pendently assigned the value 1 with probability u, and the equa-
tions cut off at maximum degree K ¼ 15 (The results are not
appreciably affected by increasing K .)

Rewire to Same. The voter terms are exactly as in the rewire-to-
random case, whereas the number of possibilities for rewiring is
reduced:

d
dt
S̄k;m ¼ αf−2mS̄k;m þ ðmþ 1ÞS̄kþ1;mþ1 þ ðmþ 1ÞS̄k;mþ1g

þ αN01½−S̄k;m þ S̄k−1;m�∕ Nð1 − uÞ½ �
þ ð1 − αÞ½−mS̄k;m þ ðk −mÞĪk;m�
þ ð1 − αÞ½−βSðk −mÞS̄k;m þ βSðk −mþ 1ÞS̄k;m−1

− γSmS̄k;m þ γSðmþ 1ÞS̄k;mþ1�:
[S11]

Again we generate our predictions by numerically solving the
differential equations. When λ ¼ 4, the predictions for the arch
are given in Fig. S1.
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Fig. S1. Arches computed by the approximate master equation (dots) compared to rewire-to-same compared to simulations (solid lines) for the indicated
values of α.
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