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Abstract. We consider a single outbreak susceptible-infected-recovered (SIR)
model and corresponding estimation procedures for the effective reproductive

number R(t). We discuss the estimation of the underlying SIR parameters

with a generalized least squares (GLS) estimation technique. We do this in the
context of appropriate statistical models for the measurement process. We use

asymptotic statistical theories to derive the mean and variance of the limiting
(Gaussian) sampling distribution and to perform post statistical analysis of

the inverse problems. We illustrate the ideas and pitfalls (e.g., large condition

numbers on the corresponding Fisher information matrix) with both synthetic
and influenza incidence data sets.

1. Introduction. The transmissibility of an infection can be quantified by its ba-
sic reproductive number R0, defined as the mean number of secondary infections
seeded by a typical infective into a completely susceptible (näıve) host popula-
tion [1, 19, 26]. For many simple epidemic processes, this parameter determines
a threshold: whenever R0 > 1, a typical infective gives rise, on average, to more
than one secondary infection, leading to an epidemic. In contrast, when R0 < 1,
infectives typically give rise, on average, to less than one secondary infection, and
the prevalence of infection cannot increase.
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Owing the natural history of some infections, transmissibility is better quantified
by the effective, rather than the basic, reproductive number. For instance, exposure
to influenza in previous years confers some cross-immunity [16, 22, 32]; the strength
of this protection depends on the antigenic similarity between the current year’s
strain of influenza and earlier ones. Consequently, the population is non-näıve,
and so it is more appropriate to consider the effective reproductive number R(t), a
time-dependent quantity that accounts for the population’s reduced susceptibility.

Our goal is to develop a methodology for the estimation ofR(t) that also provides
a measure of the uncertainty in the estimates. We apply the proposed methodol-
ogy in the context of annual influenza outbreaks, focusing on data for influenza A
(H3N2) viruses, which were, with the exception of the influenza seasons 2000–01
and 2002–03, the dominant flu subtype in the United States (US) over the period
from 1997 to 2005 [12, 36].

The estimation of reproductive numbers is typically an indirect process because
some of the parameters on which these numbers depend are difficult, if not impos-
sible, to quantify directly. A commonly used indirect approach involves fitting a
model to some epidemiological data, providing estimates of the required parameters.

In this study we estimate the effective reproductive number by fitting a determin-
istic epidemiological model employing a generalized least squares (GLS) estimation
scheme to obtain estimates of model parameters. Statistical asymptotic theory
[18, 34] and sensitivity analysis [17, 33] are then applied to give approximate sam-
pling distributions for the estimated parameters. Uncertainty in the estimates of
R(t) is then quantified by drawing parameters from these sampling distributions,
simulating the corresponding deterministic model and then calculating effective
reproductive numbers. In this way, the sampling distribution of the effective repro-
ductive number is constructed at any desired time point.

The statistical methodology provides a framework within which the adequacy of
the parameter estimates can be formally assessed for a given data set. We discuss
the use of residual plots as a diagnostic for the estimation, highlighting the problems
that arise when the assumptions of the statistical model underlying the estimation
framework are violated.

This manuscript is organized as follows: In Section 2 the data sets are intro-
duced. A single-outbreak deterministic model is introduced in Section 3. Section
4 introduces the least squares estimation methodology used to estimate values for
the parameters and quantify the uncertainty in these estimates. Our methodology
for obtaining estimates of R(t) and its uncertainty is also described. Use of these
schemes is illustrated in Section 5, in which they are applied to synthetic data sets.
Section 6 applies the estimation machinery to the influenza incidence data sets. We
conclude with a discussion of the methodologies and their application to the data
sets.

2. Longitudinal incidence data. Influenza is one of the most significant infec-
tious diseases of humans, as witnessed by the 1918 “Spanish flu” pandemic, during
which 20% to 40% of the worldwide population became infected. At least 50 million
deaths resulted, with 675,000 of these occurring in the US [37]. The impact of flu
is still significant during inter-pandemic periods: the Centers for Disease Control
and Prevention (CDC) estimate that between 5% and 20% of the US population
becomes infected annually [12]. These annual flu outbreaks lead to an average
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Table 1. Number of tested specimens and influenza isolates dur-
ing several annual outbreaks in the US [12].

Season Total number Number of Number of Number of
of tested A(H1N1) & A(H3N2) isolates B isolates
specimens A(H1N2) isolates

1997–98 99,072 6 3,241 102
1998–99 102,105 30 2,607 3,370
1999–00 92,403 132 3,640 77
2000–01 88,598 2,061 66 4,625
2001–02 100,815 87 4,420 1,965
2002–03 97,649 2,228 942 4,768
2003–04 130,577 2 7,189 249
2004–05 157,759 18 5,801 5,799
Mean 108,622 571 3,488 2,619
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Figure 1. Influenza isolates reported by the CDC in the US during
the 1999–00 season [12]. The number of H3N2 cases (isolates) is
displayed as a function of time. Time is measured as the number
of weeks since the start of the year’s flu season. For the 1999–00
flu season, week number one corresponds to the fortieth week of
the year, falling in October.

of 200,000 hospitalizations (mostly involving young children and the elderly) and
mortality that ranges between about 900 and 13,000 deaths per year [36].

The Influenza Division of the CDC reports weekly information on influenza ac-
tivity in the US from calendar week 40 in October through week 20 in May [12], the
period referred to as the influenza season. Because the influenza virus exhibits a
high degree of genetic variability, data is not only collected on the number of cases
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but also on the types of influenza viruses that are circulating. A sample of viruses
isolated from patients undergoes antigenic characterization, with the type, subtype
and, in some instances, the strain of the virus being reported [12].

The CDC acknowledges that, while these reports may help in mapping influenza
activity (whether or not it is increasing or decreasing) throughout the US, they often
do not provide sufficient information to calculate how many people became ill with
influenza during a given season. This is true especially in light of measurement un-
certainty, e.g., underreporting, longitudinal variability in reporting procedures, etc.
Indeed, the sampling process that gives rise to the tested isolates is not sufficiently
standardized across space and time, and results in variabilities in measurements
that are difficult to quantify. We return to discuss this point later in this paper.

Despite the cautionary remarks by the CDC, we use such isolate reports as
illustrative data sets to which one can apply proposed estimation methodologies.
The data sets do, in fact, represent typical data sets available to modelers for
many disease progression scenarios. Interpretation of the results, however, should
be mindful of the issues associated with the data. For the influenza data we have
chosen, the total number of tested specimens and isolates through various seasons
are summarized in Table 1. It is observed that H3N2 viruses predominated in
most seasons with the exception of 2000–01 and 2002–03. Consequently, we focus
our attention on the H3N2 subtype. Fig. 1 depicts the number of H3N2 isolates
reported over the 1999–00 influenza season.

3. Deterministic single-outbreak SIR model. The model that we use is the
standard susceptible-infected-recovered (SIR) model (see, for example, [1, 8]). The
state variables S(t), I(t), and X(t) denote the number of people who are susceptible,
infected, and recovered, respectively, at time t. It is assumed that newly infected
individuals immediately become infectious and that recovered individuals acquire
permanent immunity. The influenza season, lasting nearly thirty-two weeks [12], is
short compared to the average lifespan, so we ignore demographic processes (births
and deaths) as well as disease-induced fatalities and assume that the total popula-
tion size remains constant. The model is given by the set of nonlinear differential
equations

dS

dt
= −βS

I

N
(1)

dI

dt
= βS

I

N
− γI (2)

dX

dt
= γI. (3)

Here β is the transmission parameter and γ is the (per-capita) rate of recovery,
the reciprocal of which gives the average duration of infection. Observe that one
of the differential equations is redundant because the three compartments sum to
the constant population size: S(t) + I(t) + X(t) = N . We choose to track S(t) and
I(t). The initial conditions of these state variables are denoted by S(t0) = S0 and
I(t0) = I0.

Equation (2) for the infective population can be rewritten as

dI

dt
= γ(R(t)− 1)I, (4)
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where R(t) = S(t)
N R0 and R0 = β/γ. R(t) is known as the effective reproductive

number, while R0 is known as the basic reproductive number. We have that R(t) ≤
R0, with the upper bound—the basic reproductive number—only being achieved
when the entire population is susceptible.

We note that R(t) is the product of the per-infective rate at which new infections
arise and the average duration of infection, and so the effective reproductive number
gives the average number of secondary infections caused by a single infective, at
a given susceptible fraction. The prevalence of infection increases or decreases
according to whether R(t) is greater than or less than one, respectively. Because
there is no replenishment of the susceptible pool in this SIR model, R(t) decreases
over the course of an outbreak as susceptible individuals become infected.

4. Estimation scheme. To calculate R(t), one needs to know the two epidemi-
ological parameters β and γ, as well as the number of susceptibles S(t) and the
population size N . As mentioned before, difficulties in the direct estimation of β,
whose value reflects the rate at which contacts occur in the population and the
probability of transmission occurring when a susceptible and an infective meet, and
direct estimation of S(t) preclude direct estimation of R(t). As a result, we adopt
an indirect approach, which proceeds by first finding the parameter set for which
the model has the best agreement with the data and then calculating R(t) by using
these parameters and the model-predicted time course of S(t). Simulation of the
model also requires knowledge of the initial values, S0 and I0, which must also be
estimated.

Although the model is framed in terms of the prevalence of infection I(t), the
time-series data provides information on the weekly incidence of infection, which,
in terms of the model, is given by the integral of the rate at which new infections
arise over the week:

∫
βS(t)I(t)/N dt. We observe that the parameters β and N

only appear (both in the model and in the expression for incidence) as the ratio
β/N , precluding their separate estimation. Consequently we need only estimate the
value of this ratio, which we denote by β̃ = β/N .

We employ inverse problem methodology to obtain estimates of the vector θ =
(S0, I0, β̃, γ) ∈ Rp = R4 by minimizing the difference between the model predictions
and the observed data, according to a generalized least squares (GLS) criterion. In
what follows, we refer to θ as the parameter vector, or simply as the parameter,
in the inverse problem, even though some of its components are initial conditions
rather than parameters, of the underlying dynamic model.

4.1. Generalized Least Squares (GLS) estimation. The least squares estima-
tion methodology is based on a statistical model for the observation process (referred
to as the case-counting process) as well as the mathematical model. As is standard in
many statistical formulations, it is assumed that our known model, together with a
particular choice of parameters (the “true” parameter vector, written as θ0) exactly
describes the epidemic process, but that the n observations {Yj}n

j=1 are affected by
random deviations (e.g., measurement errors) from this underlying process. More
precisely, it is assumed that

Yj = z(tj ; θ0) + z(tj ; θ0)ρεj for j = 1, . . . , n (5)
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where z(tj ; θ0) denotes the weekly incidence given by the model under the true
parameter, θ0, and is defined by the integral

z(tj ; θ0) =
∫ tj

tj−1

β̃S(t; θ0)I(t; θ0) dt. (6)

Here t0 denotes the time at which the epidemic observation process started and the
weekly observation time points are written as t1 < · · · < tn.

We remark that the choice of a particular statistical model (i.e., the error model
for the observation process) is often a difficult task. While one can never be certain
of the correctness of one’s choice, there are post-inverse problem quantitative meth-
ods (e.g., involving residual plots) that can be effectively used to investigate this
question; see the discussions and examples in [3]. A major goal of this paper is to
present and illustrate use of such ideas and techniques in the context of surveillance
data modeling.

The “errors” εj (note that the total measurement errors ε̃j = z(tj ; θ0)ρεj are
model-dependent) are assumed to be independent and identically distributed (i.i.d.)
random variables with zero mean (E[εj ] = 0), representing measurement error as
well as other phenomena that cause the observations to deviate from the model
predictions z(tj ; θ0). The i.i.d. assumption means that the errors are uncorrelated
across time and have identical variance. We assume the variance is finite and
write var(εj) = σ2

0 < ∞. We make no further assumptions about the distribution
of the errors: specifically, we do not assume that they are normally distributed.
Under these assumptions, the observation mean is equal to the model prediction,
E[Yj ] = z(tj ; θ0), while the variance in the observations is a function of the time
point, with var(Yj) = z(tj ; θ0)2ρσ2

0 . In particular, this variance is longitudinally
nonconstant and model-dependent. One situation in which this error structure may
be appropriate is when observation errors scale with the size of the measurement
(so-called relative noise), a reasonable scenario in a “counting” process.

Given a set of observations Y = (Y1, . . . , Yn), the estimator θGLS = θGLS(Y ) is
defined as the solution of the normal equations

n∑
j=1

wj [Yj − z(tj ; θ)]∇θz(tj ; θ) = 0, (7)

where the wj are a set of nonnegative weights [18], defined as

wj =
1

z(tj ; θ)2ρ
. (8)

The definition in equation (7) assigns different levels of influence, described by the
weights, to the different longitudinal observations. Assuming ρ = 1 in the error
structure described above by Equation (5), we have that the weights are taken to
be inversely proportional to the square of the predicted incidence: wj = 1/[z(tj ; θ)]2.
On the other hand, if ρ = 1/2, then the weights are proportional to the reciprocal
of the predicted incidence; these correspond to assuming that the variance in the
observations is proportional to the value of the model (as opposed to its square).
The most popular assumption, the ρ = 0 case, leads to the standard ordinary least
squares (OLS) approach; see [3] for a full discussion of OLS methods. For the
problem and data set we investigate here, the OLS did not produce very reasonable
results [15].
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Suppose {yj}n
j=1 is a realization of the case counting process {Yj}n

j=1 and define
the function L(θ) as

L(θ) =
n∑

j=1

wj [yj − z(tj ; θ)]
2
. (9)

The quantity θGLS is a random variable, and a realization of it, denoted by θ̂GLS ,
is obtained by solving

n∑
j=1

wj [yj − z(tj ; θ)]∇θz(tj ; θ) = 0, (10)

which is not equivalent to ∇θL(θ) = 0 if wj is given by equation (8) with ρ 6= 0; see
[3] for further discussion.

Because θ0 and σ2
0 are unknown, the estimate θ̂GLS is used to calculate approx-

imations of σ2
0 and the covariance matrix Σn

0 by

σ2
0 ≈ σ̂2

GLS =
1

n− 4
L(θ̂GLS) (11)

Σn
0 ≈ Σ̂n

GLS = σ̂2
GLS

[
χ(θ̂GLS , n)T W (θ̂GLS)χ(θ̂GLS , n)

]−1

. (12)

In the limit as n → ∞, the GLS estimator has the asymptotic property θGLS ≈
θn

GLS ∼ N4(θ0,Σn
0 ) (for details see [3, 18, 34]). Here,

W (θ̂GLS) = diag(w1(θ̂GLS), . . . , wn(θ̂GLS)),

with wj(θ̂GLS) = 1/[z(tj ; θ̂GLS)]2ρ. The sensitivity matrix χ(θ̂GLS , n) denotes the
variation of the model output with respect to the parameter, and can be obtained us-
ing standard theory [2, 3, 17, 21, 25, 27, 33]. The entries of the j-th row of χ(θ̂GLS , n)
denote how the weekly incidence at time tj changes in response to changes in the
parameter. For example, the first entry of the j-th row of χ(θ̂GLS , n) is given by
(the reader may find further details about the calculation of χ(θ̂GLS , n) in [15]):

∂z

∂S0
(tj ; θ) = β̃

∫ tj

tj−1

[
I(t; θ)

∂S

∂S0
(t; θ) + S(t; θ)

∂I

∂S0
(t; θ)

]
dt, (13)

with θ = θ̂GLS .
The standard errors for θ̂GLS can be approximated by taking the square roots of

the diagonal elements of the covariance matrix Σ̂n
GLS .

The values of the weights involved in the GLS estimation depend on the values
of the fitted model. These values are not known before carrying out the estimation
procedure and consequently the GLS estimation is implemented as an iterative
process. The first iteration is carried out by setting ρ = 0, which reduces the
statistical model in equation (5) to Yj = z(tj ; θ0) + εj , and also implies the weights
in equation (7) are equal to one (wj = 1). This results in an ordinary least squares
scheme, the solution of which provides an initial set of weights via equation (8). A
weighted least squares fit is then performed using these weights, obtaining updated
model values and hence an updated set of weights. The weighted least squares
process is repeated until some convergence criterion is satisfied, such as successive
values of the estimates being deemed to be sufficiently close to each other. The
process can be summarized as follows:

1. Estimate θ̂GLS by θ̂(0) using an OLS criterion. Set k = 0. Set ρ = 1 or
ρ = 1/2;
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2. form the weights ŵj = 1/[z(tj ; θ̂(k))]2ρ;
3. define L(θ) =

∑n
j=1 ŵj [yj − z(tj ; θ)]2. Re-estimate θ̂GLS by solving

θ̂(k+1) = arg min
θ∈Θ

L(θ)

to obtain the k + 1 estimate θ̂(k+1) for θ̂GLS ;
4. set k = k + 1 and return to 2. Terminate the procedure when successive

estimates for θ̂GLS are sufficiently close to each other.

The convergence of this procedure is discussed in [9, 18]. This procedure was
implemented using a direct search method, the Nelder-Mead simplex algorithm,
as discussed by [28], provided by the MATLAB (The Mathworks, Inc.) routine
fminsearch.

4.2. Estimation of the effective reproductive number. Let the pair (θ̂, Σ̂) de-
note the parameter estimate and covariance matrix obtained with the GLS method-
ology from a given realization {yj}n

j=1 of the case-counting process. Simulation of
the SIR model then allows the time course of the susceptible population, S(t; θ̂),
to be generated. The time course of the effective reproductive number can then be
calculated as R(t; θ̂) = S(t; θ̂) ˆ̃

β/γ̂. This trajectory is our central estimate of R(t).
The uncertainty in the resulting estimate of R(t) can be assessed by repeated

sampling of parameter vectors from the corresponding sampling distribution ob-
tained from the asymptotic theory, and applying the above methodology to calculate
the R(t) trajectory that results each time. To generate m such sample trajectories,
we sample m parameter vectors, θ(k), from the 4-multivariate normal distribution
N4(θ̂, Σ̂). We require that each θ(k) lies within a feasible region Θ determined by
biological constraints. If this is not the case for a particular sample, we discard
it and then we resample until θ(k) ∈ Θ. Numerical solution of the SIR model us-
ing θ(k) allows the sample trajectory R(t; θ(k)) to be calculated. We summarize
these steps involved in the construction of the sampling distribution of the effective
reproductive number:

1. Set k = 1;
2. obtain the k-th parameter sample from the 4-multivariate normal distribution:

θ(k) ∼ N4(θ̂, Σ̂);

3. if θ(k) /∈ Θ (constraints are not satisfied) return to 2. Otherwise go to 4;
4. using θ = θ(k) find numerical solutions, denoted by

(
S(t; θ(k)), I(t; θ(k))

)
, to

the nonlinear system defined by Equations (1) and (2). Construct the effective
reproductive number as follows:

R(t; θ(k)) = S(t; θ(k))
β̃(k)

γ(k)
,

where θ(k) =
(
S

(k)
0 , I

(k)
0 , β̃(k), γ(k)

)
;

5. set k = k + 1. If k > m then terminate. Otherwise return to 2.

Uncertainty estimates for R(t) are calculated by finding appropriate percentiles
of the distribution of the R(t) samples.
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Figure 2. Results from applying the GLS methodology to syn-
thetic data with non-constant variance noise (α = 0.075), using
n = 1, 000 observations. The initial guess for the optimization rou-
tine was θ = 1.10θ0. The weights in the cost function were equal
to 1/z(tj ; θ)2, for j = 1, . . . , n. Panel (a) depicts the observed and
fitted values and panel (b) displays 1, 000 of the m = 10, 000 R(t)
sample trajectories. Residuals plots are presented in panels (c)
and (d): modified residuals versus fitted values in (c) and modified
residuals versus time in (d).
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Table 2. Estimates from a synthetic data set of size n = 1, 000,
with non-constant variance using α = 0.075. The R(t) sample size
is m = 10, 000. The initial guess of the optimization algorithm was
θ = 1.10θ0. Each weight in the cost function L(θ) (see Equation
(9)) was equal to 1/z(tj ; θ)2 for j = 1, . . . , n. The units of the
estimated quantities are: people, for S0 and I0; per person per
week, for β̃; and per week, for γ.

Parameter True value Initial guess Estimate Standard error
S0 3.500×105 3.800×105 3.498×105 1.375×103

I0 9.000×101 9.900×101 9.085×101 1.424×100

β̃ 5.000×10−6 5.500×10−6 4.954×10−6 4.411×10−8

γ 5.000×10−1 5.500×10−1 4.847×10−1 1.636×10−2

L(θ̂GLS) = 5.689× 100

σ2
0 = 5.625× 10−3 σ̂2

GLS = 5.712× 10−3

Min.R(t; θ̂GLS) 0.132 [0.120,0.146]
Max.R(t; θ̂GLS) 3.576 [3.420,3.753]

True value of the reproductive number at time t0; R(t0) = S0β̃/γ = 3.500

5. Estimation scheme applied to synthetic data. We generated a synthetic
data set with nonconstant variance noise. The true value θ0 was fixed, and was
used to calculate the numerical solution z(tj ; θ0). Observations were computed in
the following fashion:

Yj = z(tj ; θ0) + z(tj ; θ0)αVj = z(tj ; θ0) (1 + αVj) , (14)

where the Vj are independent random variables with standard normal distribution
(i.e., Vj ∼ N (0, 1)), and 0 < α < 1 denotes a desired percentage. Hence ρ = 1
in the general formulation with εj = αVj . In this way, var(Yj) = [z(tj ; θ0)α]2

which is nonconstant across the time points tj . If the terms {vj}n
j=1 denote a

realization of {Vj}n
j=1, then a realization of the observation process is denoted by

yj = z(tj ; θ0)(1 + αvj).
An n = 1, 000 point synthetic data set was constructed with α = 0.075. The

optimization algorithm was initialized with the estimate θ = 1.10θ0. The weights
in the normal equations defined by Equation (7), were chosen as wj = 1/z(tj ; θ)2

(i.e., ρ = 1).
Table 2 lists estimates of the parameters and R(t), together with uncertainty

estimates. In the case of R(t), uncertainty was assessed based on the simula-
tion approach using m = 10, 000 samples of the parameter vector, drawn from
N4(θ̂GLS , Σ̂n

GLS). Fig. 2(a) depicts both data and fitted model points z(tj ; θ̂GLS)
plotted versus tj . Fig. 2(b) depicts 1, 000 of the 10, 000 R(t) curves.

Residuals plots are displayed in Fig. 2(c) and (d). Because αvj = (yj −
z(tj ; θ0))/z(tj ; θ0), by construction of the synthetic data, the residuals analysis fo-
cuses on the ratios

yj − z(tj ; θ̂GLS)

z(tj ; θ̂GLS)
,

which in the labels of Fig. 2(c) and (d) are referred to as “Modified residuals” (for
a more detailed discussion of residuals and modified residuals, see [3]). In Fig. 2(c)
these ratios are plotted against z(tj ; θ̂GLS), while Panel (d) displays them versus
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the time points tj . The lack of any discernable patterns or trends in Fig. 2(c) and
(d) suggests that the errors in the synthetic data set conform to the assumptions
made in the formulation of the statistical model of equation (14). In particular, the
errors are uncorrelated and have variance that scales according to the relationship
stated above.

6. Analysis of influenza outbreak data. The GLS methodology was applied to
longitudinal observations of six influenza outbreaks (see Section 2), giving estimates
of the parameters and the reproductive number for each season. The number of
observations n varies from season to season. The R(t) sample size was m = 10, 000
in each case. The set of admissible parameters Θ is defined by the lower and
upper bounds listed in Table 3 along with the inequality constraint S0β̃/γ > 1.
The bounds in Table 3 were obtained from or based on [10, 29, 32] and references
therein. For brevity, we only present here the results obtained using data from the
1998–99 season with GLS methods. Further results including (unsuccessful) use of
OLS methodology can be found in [15].

Table 3. Lower and upper bounds on the initial conditions and parameters.

Suitable range Unit

1.00×102 < S0 < 7.00×106 people

0.00 < I0 < 5.00×103 people

7.00×10−9 < β̃ < 7.00×10−1 weeks−1people−1

3/7 < 1/γ <4/7 weeks

Visual inspection suggests that the model fits obtained using the GLS approach
(Fig. 3) are even worse than those obtained using OLS (the results obtained using
OLS can be found in [15]). This is somewhat misleading, however, because the
weights, defined as wj = 1/[z(tj ; θ)]2, mean that the GLS fitting procedure (un-
like visual inspection of the figures) places increased emphasis on datapoints whose
model value is small and decreased emphasis on datapoints where the model value
is large. If these graphs are, instead, plotted with a logarithmic scale on the verti-
cal axis, an accurate visualization is obtained (Fig. 4): multiplicative observation

Table 4. Results of GLS estimation applied to influenza data from
season 1998–99, weights equal to 1/z(tj ; θ)2.

Parameter Estimate Unit Standard error
S0 7.939×103 people 1.521×104

I0 2.436×10−1 people 4.216×10−1

β̃ 3.458×10−4 weeks−1people 5.233×10−5

γ 2.333×100 weeks−1 5.318×100

L(θ̂GLS) =1.754×101

σ̂2
GLS = 6.047× 10−1

Min.R(t; θ̂GLS) 0.843 [0.784,1.018]
Max.R(t; θ̂GLS) 1.177 [1.052,1.252]
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Figure 3. GLS applied to influenza data from 1998–99 season.
The weights were taken equal to 1/z(tj ; θ)2. Panel (a) depicts the
observations (solid squares) as well as the model prediction (solid
curve). In Panel (b) 1, 000 of the m = 10, 000 samples of the
effective reproductive number R(t) are displayed. The solid curve
depicts the central estimate R(t; θ̂GLS) and the dashed curve the
median of theR(t) samples at each point in time. Panel (c) exhibits
the modified residuals (yj − z(tj ; θ̂GLS))/z(tj ; θ̂GLS) plotted versus
the model predictions, z(tj ; θ̂GLS). Panel (d) displays the modified
residuals plotted against time.
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Figure 4. Best-fitting model for the 1998–99 season, obtained us-
ing GLS with 1/z(tj ; θ)2 weights. Observations (solid squares) and
the model prediction (solid curve) are plotted on a logarithmic
scale.

noise on a linear scale becomes constant variance additive observation noise on a
logarithmic scale.

The parameter estimates have standard errors that are often of the same order of
magnitude as the estimates themselves (Table 4). The residuals plots reveal clear
patterns and trends (Fig. 3(c) and (d)). Temporal trends in the residuals (and
visual inspection of the plots depicting the best fitting model and the datapoints)
indicate that there are systematic differences between the fitted model and the
data. For instance, it appears that the fitted model peaks slightly earlier than the
observed outbreak, and, as a result, there are numbers of sequential points where
the data lies above or below the model. The modified residuals versus model plot
suggests that the variation of the residuals may be decreasing as the model value
increases.

The condition number of the matrix χ(θ̂GLS , n)T W (θ̂GLS)χ(θ̂GLS , n) is 9.0×1019.
This is very similar to that for the OLS estimation (shown in [15]), again suggesting
caution in interpreting the standard errors.

It is quite plausible that our description of the error structure of the data is inad-
equate when the numbers of cases are at low levels (a not uncommon situation), so
that the statistical model chosen is not correct. In particular, the reporting process
might change as the outbreak emerges (e.g., doctors become more alert to possible
flu cases) or comes close to ending. Moreover, our mathematical model may also
be incorrect because it is deterministic whereas an epidemic contains stochasticity.
Stochastic effects may exhibit a relatively large impact at the beginning or end of
an epidemic, when the numbers of cases are low. It is possible for the infection to
undergo extinction, a phenomenon which cannot be captured by the deterministic
model. Spatial clustering of cases is also a distinct possibility, particularly during
the early stages of an outbreak. This will affect the time course of an outbreak as
well as the reporting process: clustering of cases may well increase the reporting
noise if cases in a cluster tend to get reported together (e.g., a cluster occurs within
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Table 5. Estimation results from GLS, with weights 1/z(tj ; θ),
applied to truncated influenza data set for season 1998–99.

Parameter Estimate Unit Standard error
S0 6.017×103 people 3.287×103

I0 2.091×100 people 9.483×10−1

β̃ 3.797×10−4 weeks−1people 1.774×10−5

γ 1.750×100 weeks−1 1.317×100

L(θ̂GLS) =3.872×101

σ̂2
GLS = 2.277× 100

Min.R(t; θ̂GLS) 0.750 [0.748,0.819]
Max. R(t; θ̂GLS) 1.306 [1.212,1.308]

an area where many isolates are sent to the CDC) or not reported together (e.g., a
cluster occurs in an area that has poorer coverage in the reporting process).

Indeed, examination of one of the influenza time series plotted on a logarithmic
scale (Fig. 4) indicates that both the beginning and end of the time series are
problematic. The fit of the model (see [15] for additional details) is clearly poorer
over these parts of the time series, which correspond to the times when the observed
values are small.

Both forms of the weights (inversely proportional to the square of the predicted
incidence or inversely proportional to the predicted incidence) mean that errors at
these small values have considerable impact on the cost function, and hence on the
GLS estimation process, although this is less of a concern for the 1/z weights.

Another issue that has been raised by studies of parameter estimation in bio-
logical situations concerns redundancy in information measured when a system is
close to its equilibrium [4]. This might be a relevant issue for the final part of the
outbreak data, as there is often a period lasting ten or more weeks when there are
few cases.

We investigated whether the removal of the lowest-valued points from the data
sets would improve the inverse problem results. We constructed truncated data sets
by considering only the period between the time when the number of isolates first
reached ten at the beginning of the outbreak and first fell below ten at the end of
the outbreak. As a notational convenience, we refer to the numbers of susceptibles
and infectives at the start of the first week of the truncated data set as S0 and I0,
even though these times no longer correspond to the start of the influenza season.
(For example, in Fig. 5, S0 and I0 refer to the state of the system at t = 8.)

Using fewer observations, with the 1/z weights, we obtained a decrease in the
standard errors for most of the parameter estimates (comparing Tables 4 and 5).
This decrease occurs even though the number of points in the data set has fallen
from 35 to 23, causing the factor 1/(n−4) that appears in equation (11) to increase
by 80%. The corresponding residuals plots (see Fig. 5(c) and (d)) provide no
suggestion that the assumptions of the statistical model are invalid (contrasting
Fig. 3(c) and (d), which display temporal trends), and hence we conclude the
statistical model with ρ = 1/2 might be reasonable.

The condition number of the matrix χ(θ̂GLS , n)T W (θ̂GLS)χ(θ̂GLS , n) is 9.2×1019.
Truncation of the data sets helped considerably with the GLS estimation process,
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Figure 5. Model fits obtained using GLS on truncated influenza
data from season 1998–99, weights equal to 1/z(tj ; θ). Panel (a)
shows the observations (solid squares) as well as the model predic-
tion (solid curve). In Panel (b) 1, 000 of the m = 10, 000 samples of
the effective reproductive number R(t) are displayed together with
the central estimate R(t; θ̂GLS) (solid curve) and the median of the
R(t) samples at each time point (dashed curve). Panel (c) shows
the modified residuals (yj − z(tj ; θ̂GLS))/z(tj ; θ̂GLS)1/2 versus the
model prediction. In panel (d), each modified residual is displayed
versus the observation time point.
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although the large condition numbers might be cause for caution in relying too
much on the standard errors.

Truncation of the data set had little effect on the parameter estimates obtained
using OLS (results are detailed in [15]), except that the values of S0 and I0 were
changed because they refer to a later initial time, as discussed above. Standard
errors for the OLS estimates were higher with the truncated data set than for
the full data set, as should be expected given the reduced number of data points.
Overall, the results using OLS with the truncated data were less than satisfactory.

7. Discussion. We have discussed parameter estimation methodologies (OLS, GLS
with different weighting factors) that, using sensitivity analysis and asymptotic sta-
tistical theory, also provide measures of uncertainty for the estimated parameters.
The GLS techniques were illustrated first using synthetic data sets, and it was
seen that they can perform very well with reasonable data sets. Even within the
ideal situation provided by synthetic data, potential problems of the approach were
identified [15]. Worryingly, these problems were not apparent from inspection of
the uncertainty estimates (standard errors) alone. However, these problems were
revealed by examination of model fit diagnostic plots, constructed in terms of the
residuals of the fitted model (see [15]). Using these post-analysis residual plots,
we were able to identify a likely statistical error model for the particular influenza
surveillance data set. The results here and in [15] argue strongly for the routine
use of uncertainty estimation, together with careful examination of residuals plots
when using SIR-type models with surveillance data.

Development of mathematical and statistical methods geared to the (real-time)
estimation of the effective reproductive number is relatively widespread and grow-
ing, with various contributions including [5, 6, 11, 24, 31, 39]. Wallinga and Teunis
[39] developed a likelihood-based methodology that assumes the generation interval
(time from symptom onset in a primary case to symptom onset in a secondary case)
is described by a Weibull distribution and that a specific infection network under-
lies the observed epidemic curve; a likelihood-based procedure infers who infected
whom, from pairs of cases rather than the entire infection network. Cauchemez, et
al., [11] proposed a methodology to monitor the efficacy of outbreak intervention;
an outbreak is under control if estimates of the effective reproductive number R(t)
are below unity; R(t) < 1. The proposed method involves: data on the number of
cases (incidence), data on the time of onset of symptoms, and contact tracing in-
formation from a subset of cases. A Markov chain Monte Carlo (MCMC) scheme is
used to estimate the posterior distribution of the generation interval, and eventually
R(t), up to the last observation. Real-time R(t) estimates can only be calculated
after having the estimated posterior distribution of the generation interval. Fors-
berg White and Pagano [24] devised a method that uses simple surveillance data to
estimate the basic reproductive number and the serial interval (also referred to as
the generation interval). This methodology is likelihood-based; the likelihood of the
observed counts of cases of infection is based on an evolving Poisson distribution,
from which the maximum likelihood estimates (MLE) are derived. Additionally,
branching process theory is used to calculate an estimator that is contrasted to the
MLE and to the Bayesian posterior mode (with informative and noninformative
priors); all of these are illustrated using simulated observations. The simultaneous
estimation of the serial interval (estimated along with the basic reproductive num-
ber) does not require information about contact tracing. However, it is assumed that
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the distribution of the serial interval is gamma; the methodology can be adjusted to
model the serial interval with a different parametric model. Nishura [31] estimated
the effective reproductive number by applying a discrete-time branching process
to back-calculated incidence data, assuming three different serial intervals. The
absence of temporal monotonic decrease in the reproductive number estimates is
suggestive of time variation in the patterns of secondary transmission. Bettencourt,
et al., [5] and Bettencourt and Ribeiro [6] formulated stochastic models for the time
evolution of the number of cases in the context of emerging diseases. In these for-
mulations the effective reproductive number is a time-evolving parameter which is
inferred by calculating its posterior distribution (application of a Bayesian scheme)
at each observation time point using the observed number of cases at hand. Their
proposed methodology addresses uncertainty quantification of prediction along with
anomaly detection (two-sided p-value significance test).

The statistical methodology presented here addresses the effect of observation
error on parameter estimation. While the approach can handle different statistical
models for the observation process, it does assume that we have a mathematical
model that correctly describes the behavior of the system, albeit for an unknown
value of the parameter vector. The methodology does not examine the effect of
mis-specification of the mathematical model. It is well known that this effect can
often dwarf the uncertainty that arises from observation error [30]. Examination of
residual plots, however, can identify systematic deviations between the behavior of
the model and the data.

The methodology proposed here is based on a deterministic formulation (single-
outbreak SIR) of the underlying epidemic process. Consequently, the constructed
curves of the effective reproductive number are deterministic in nature (while the
uncertainty quantification results from the statistical model of the observation er-
ror), and as such they show monotonically decreasing temporal patterns; from the
beginning to the end of an outbreak. It is clear that our methodology would fail
to reflect any stochastic behavior in R(t). In fact, incidence curves exhibiting bi-
modality and strong stochasticity are most likely not suitable for the application
of our methodology as it stands, unless either the rescaled transmission rate, β̃, or
the recovery rate, γ, or both, are modeled as time-dependent coefficients, that is,
unless we modify the mathematical model.

Another limitation of the modeling methodology proposed here is that we use
an SIR model which neglects a latency period (a delay prior to the development of
active infection; a stage where individuals become capable of transmitting infection
to others). It has been suggested before [14, 30] that ignoring the latency period may
result in biased estimations of the reproductive number (an illustration of the effect
of a latency period on R(t) is given in the appendix). The estimation framework
presented here could be readily applied to mathematical models with latency.

Application of several least squares approaches to the influenza isolate data gave
mixed results (applications of both OLS and GLS are addressed more fully in [15]).
Estimates of the effective reproductive number were in broad agreement with re-
sults obtained in other studies (see Table 6). While apparently reasonable fits were
obtained in some instances, the uncertainty analyses highlighted situations in which
visual inspection suggested that a good fit had been obtained but for which esti-
mated parameters had large uncertainties. Residual plots showed that variance in
the surveillance data may not have been constant (i.e., observation noise was not
simply additive, var(Yj) 6= σ2

0), but more likely scaled according to either the square
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Table 6. Comparison between reproductive number estimates
across studies of interpandemic influenza. In this table R0

stands for the basic reproductive number (näıve population), while
max(R(t)) denotes the initial effective reproductive number in a
non-näıve population.

Studies of interpandemic influenza Estimates
Bonabeau et al. [7] 1.70 ≤ R0 ≤ 3.00
Chowell et al. [13] 1.30 ≤ max(R(t)) ≤ 1.50
Dushoff et al. [20] 4.00 ≤ R0 ≤ 16.00
Flahault et al. [23] R0 = 1.37
Spicer & Lawrence [35] 1.46 ≤ R0 ≤ 4.48
Viboud et al. [38] 1.90 ≤ max(R(t)) ≤ 2.50

of the fitted model value (i.e., relative measurement error, var(Yj) = z(tj ; θ0)2σ2
0)

or the fitted model value itself (i.e., var(Yj) = z(tj ; θ0)σ2
0). The potentially large

impact of errors at low numbers of cases on the GLS estimation process was clearly
observed.

Temporal trends were observed in some of the residuals plots, indicative of sys-
tematic differences between the behavior of the SIR model and the data. Potential
sources of these differences include inadequacies of the mathematical model to de-
scribe the process underlying the data and issues with the reliability of (i.e., vari-
ability in) the data itself. We emphasize, however, that our use of these typical
data sets provide an excellent illustration of the methodologies as well as the pos-
sible pitfalls that may be inherent in attempting to use typical surveillance data to
estimate parameters and effective reproductive numbers.

Sophisticated mathematical and statistical algorithms and analyses can be uti-
lized to fit SIR-type epidemiological models to surveillance data. Reasonable qual-
ity data, good mathematical and statistical models, and careful post analyses using
residual plots are all required if this approach is to be successful. In many instances,
however, the available surveillance data is most likely inadequate to validate the SIR
model with any degree of confidence especially if a mildly inadequate mathematical
model and an incorrect statistical model for the data are chosen. This is likely
to be true in much of the modeling efforts reported for epidemics where the data
collection process has inadequacies and where no uncertainty quantification along
with post analysis are done.
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Appendix. It is well known that approaches based on model fitting lead to under-
estimates of the basic reproductive number of an infection if the latent period of
the infection is ignored, i.e., if an SIR model is used to describe an outbreak when
an SEIR model would have been more appropriate (see [14, 30, 40] and references
therein).

We illustrate the effects of infection latency on the estimation of R(t) by con-
sidering a synthetic data set obtained using the standard single outbreak SEIR
model

dS

dt
= −β̃SI (15)

dE

dt
= β̃SI − αE (16)

dI

dt
= αE − γI (17)

dX

dt
= γI. (18)

Here, β̃ = β/N and we take the initial condition to be (S(t0) = S0, E(t0) =
0, I(t0) = I0, X(t0) = 0). The parameter α denotes the rate at which individu-
als progress from the latent class E to the infectious class I.

The effective reproductive number for this model is given by

R(t) ≡ R(t; q) = S(t; q)β̃/γ, (19)

just as for the SIR model, but where q = (S0, I0, β̃, γ, α).
Latency slows the spread of infection: time spent in the latent class means an

individual’s secondary infections occur later than they would if there was no latency.
If SIR and SEIR models were simulated using the same set of parameters and initial
conditions, the outbreak would occur more rapidly for the SIR model. Consequently,
if we considered the forward problem and calculated R(t) curves for corresponding
SIR and SEIR models, we would see that their initial values would be identical
but that there would be a more rapid decrease in R(t) for the SIR model as its
susceptible population is more rapidly depleted. The situation is not so simple,
however, for the inverse problem because parameter values are estimated from the
data: we would not expect to obtain the same set of parameter values if we fitted
the two different models.

Our synthetic data set was generated by adding constant variance noise to an
incidence time series obtained from the SEIR model (for details in calculating syn-
thetic data see [15]). The OLS procedure was used to estimate the parameter vector
q = (S0, I0, β̃, γ, α) for the SEIR model and the vector θ = (S0, I0, β̃, γ) for the SIR
model.

In Fig. 6 we display the central estimates of R(t) obtained using the two models:
the SIR-based estimates R(t; θ̂) (circles), and the SEIR-based estimates R(t; q̂)
(crosses). Using our known parameter values (listed in the figure caption), the true
value of the reproductive number at time t0 is R(t0) = S0β̃/γ = 2.45. Use of the
SEIR model provides us with a good estimate of this quantity, while the SIR-based
approach leads to an appreciable underestimate, in accordance with the well-known
results discussed above.

Over the course of the outbreak, bothR(t; θ̂) andR(t; q̂) decrease as the suscepti-
ble population becomes depleted. Because its initial value is greater, the SEIR-based
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Figure 6. OLS estimates, obtained from synthetic data, of
the effective reproductive number, R(t), versus time, t. The
circles (single-outbreak SIR model) display R(t) ≡ R(t; θ̂) =

S(t; θ̂) ˆ̃
β/γ̂ with θ̂ = (Ŝ0, Î0,

ˆ̃
β, γ̂), while the crosses (single-outbreak

SEIR model) display R(t) ≡ R(t; q̂) = S(t; q̂) ˆ̃
β/γ̂ where q̂ =

(Ŝ0, Î0,
ˆ̃
β, γ̂, α̂). The parameter values used to generate the syn-

thetic data were β̃ = 3.5×10−6, γ = 0.50, α = 1.5, S0 = 3.50×105,
and I0 = 90.0. The true reproductive number at time t0 is 2.45.

estimate R(t; q̂) falls by a greater amount than the SIR-based estimate R(t; θ̂). For
both models, the estimated number of susceptibles falls by almost the same amount,
which is unsurprising given that the decrease in the number of susceptibles is equal
to the total incidence over the outbreak.

Residuals plots give an indication of the inadequacy of the SIR model as a de-
scription of the synthetic data set: temporal patterns are clearly visible when the
SIR residuals are plotted against time. No such pattern is seen in the corresponding
plot of the residuals from the SEIR model fit.

This synthetic data example illustrates that use of an inadequate mathematical
description of the epidemic process can be misleading. Because influenza infection
has a latent period, an SEIR model is likely to be a more appropriate choice than
an SIR model and so the estimates we obtained in the main text should, there-
fore, be interpreted with some caution. Having said this, the methodological issues
that are the main part of this study, namely the statistical uncertainty analysis
and the diagnostic information provided by residuals plots, apply regardless of the
mathematical model that is employed.
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282 CINTRÓN-A., CASTILLO-C., BETTENCOURT, LLOYD AND BANKS

[17] J. B. Cruz, Jr., ed., “System Sensitivity Analysis,” Dowden, Hutchinson & Ross, Inc., Strouds-
berg, PA, 1973.

[18] M. Davidian and D. M. Giltinan, “Nonlinear Models for Repeated Measurement Data,” Chap-

man & Hall, Boca Raton, 1995.
[19] K. Dietz, The estimation of the basic reproduction number for infectious diseases, Stat.

Methods Med. Res., 2 (1993), 23–41.
[20] J. Dushoff, J. B. Plotkin, S. A. Levin and D. J. D. Earn, Dynamical resonance can account

for seasonality of influenza epidemics, Proc. Natl. Acad. Sci. USA, 101 (2004), 16915–16916.

[21] M. Eslami, “Theory of Sensitivity in Dynamic Systems: an Introduction,” Springer-Verlag,
New York, NY, 1994.

[22] N. M. Ferguson, A. P. Galvani and R. M. Bush, Ecological and immunological determinants

of influenza evolution, Nature, 422 (2003), 428–433.
[23] A. Flahault, S. Letrait, P. Blin, S. Hazout, J. Menares and A. J. Valleron, Modeling the 1985

influenza epidemic in France, Stat. Med., 7 (1988), 1147–1155.

[24] L. Forsberg White and M. Pagano, A likelihood-based method for real-time estimation of the
serial interval and reproductive number of an epidemic, Stat. Med., 27 (2008), 2999–3016.

[25] P. M. Frank, “Introduction to System Sensitivity Theory,” Academic Press, New York, NY,
1978.

[26] H. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653.

[27] M. Kleiber, H. Antunez, T. D. Hien and P. Kowalczyk, “Parameter Sensitivity in Nonlinear
Mechanics: Theory and Finite Element Computations,” John Wiley & Sons, Chichester, 1997.

[28] J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the

Nelder-Mead simplex method in low dimensions, SIAM J. Optimiz., 9 (1999), 112–147.
[29] I. M. Longini, J. S. Koopman, A. S. Monto and J. P. Fox, Estimating household and commu-

nity transmission parameters for influenza, Am. J. Epidemiol., 115 (1982), 736–751.
[30] A. L. Lloyd, The dependence of viral parameter estimates on the assumed viral life cycle:

Limitations of studies of viral load data, Proc. R. Soc. Lond. B, 268 (2001), 847–854.
[31] H. Nishura, Time variations in the transmissibility of pandemic influenza in Prussia, Ger-

many, from 1918-19, Theor. Biol. Med. Model., 4 (2007); Published online (http://www.
tbiomed.com/content/4/1/20) DOI: 10.1186/1742-4682-4-20.

[32] M. Nuno, G. Chowell, X. Wang and C. Castillo-Chávez, On the role of cross-immunity and
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