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There is international concern about chemicals that alter endocrine system function in humans and/or wildlife
and subsequently cause adverse effects.We previously developed amechanistic computational model of the hy-
pothalamic–pituitary–gonadal (HPG) axis in female fathead minnows exposed to a model aromatase inhibitor,
fadrozole (FAD), to predict dose–response and time-course behaviors for apical reproductive endpoints. Initial
efforts to develop a computational model describing adaptive responses to endocrine stress providing good fits
to empirical plasma 17β-estradiol (E2) data in exposed fish were only partially successful, which suggests that
additional regulatory biology processes need to be considered. In this study, we addressed short-comings of
the previous model by incorporating additional details concerning CYP19A (aromatase) protein synthesis.
Predictions based on the revisedmodel were evaluated using plasma E2 concentrations and ovarian cytochrome
P450 (CYP) 19 A aromatasemRNA data from two fatheadminnow time-course experiments with FAD, aswell as
from a third 4-day study. The extended model provides better fits to measured E2 time-course concentrations,
and the model accurately predicts CYP19A mRNA fold changes and plasma E2 dose–response from the 4-d
concentration–response study. This study suggests that aromatase protein synthesis is an important process in
the biological system to model the effects of FAD exposure.

© 2016 Published by Elsevier Inc.
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1. Introduction

There is international concern about environmental contaminants,
commercial products and drugs that alter endocrine system function
in humans and/or wildlife and subsequently cause adverse effects
(Cooper and Kavlock, 1997; Daston et al., 2003; Hutchinson et al.,
2006; Zacharewski, 1998). The Safe Drinking Water Act Amendments
(1996) and the Food Quality Protection Act (1996) require the U.S.
Environmental Protection Agency (EPA) to screen for endocrine-active
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chemicals in drinking water and pesticides used in food production.
Based on this legislation, the EPA developed and implemented a
multi-phased screening (Tier 1) and testing (Tier 2) process called the
Endocrine Disruptor Screening Program (EDSP; U.S. Environmental
Protection Agency,, 1998, 2009). Steroid biosynthesis inhibitors,
including aromatase inhibitors, were recognized as an important class
of endocrine disruptors and were selected for evaluation in the EDSP
(Drenth et al., 1998; Sanderson, 2006; Vinggaard et al., 2000; U.S.
Environmental Protection Agency, 1998). One of the functions of EDSP
Tier 2 is to characterize the dose–response of chemicals that can interact
with the endocrine system, reflecting the importance of understanding
the dose–response behavior of endocrine disruptors.

The dose–response and time-course (DRTC) behavior of organisms
exposed to environmental chemicals are major determinants of health
risk. In addition to factors like adsorption, distribution, metabolism, and
elimination, physiological adaptation or compensation can be a major
determinant of the occurrence of adverse effects. Understanding
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compensatory responses is critical to the modern practice of toxicology,
particularly as the field evolves from traditional reliance on whole
animal testing with apical endpoints toward more predictive
approaches anchored to an understanding of chemical modes of action.
In recognition of this, the U.S. National Research Council report, Toxicity
Testing in the 21st Century: A Vision and a Strategy, emphasizes that adap-
tive changes within organisms exposed to environmental stress can alter
dose–response behaviors to modulate stressor effects (National Research
Council, 2007). Consequently, to improve descriptions of dose–response
behaviors for risk assessment, a better understanding of adaptivemecha-
nisms is needed. Hence, a goal of our larger research effort (Ankley et al.,
2009) has been to develop a computational model of adaptive
Fig. 1.Graphical representation of biochemical processes within the six compartments of them
the venous blood (A), processes include: uptake and release of LH/FSH, E2, and FAD; degradatio
FAD transport from gill lamellae to gill blood. In the brain (C), processes include: uptake and rel
LH/FSH release into venous blood. In the ovary (D), processes include: uptake and release of F
(surface); LH/FSH receptor-mediated activation of CYP19A_mRNA synthesis; binding of CY
translation of CYP19A_mRNA into CYP19A by CYP19A_mRNA_Rib complex and tRNA_AA;
CYP19A; enzyme inhibition of CYP19A by FAD. In the liver (E), processes includes: uptake a
include uptake and release of FAD and E2.
mechanisms in the hypothalamic–pituitary–gonadal (HPG) axis for a
model vertebrate, the fathead minnow (Pimephales promelas).

In initial studies, we developed a mathematical model to predict the
DRTC behaviors in the HPG axis of female fathead minnows exposed to
model aromatase inhibitor, fadrozole (FAD; Breen et al., 2013).
Fadrozole competitively inhibits the steroidogenic enzyme aromatase,
a cytochrome P450 (CYP) 19 A, which is rate-limiting in the conversion
of testosterone (T) to 17β-estradiol (E2) (Miller, 1988).While FAD itself
is not ecologically relevant, there are a variety of environmental con-
taminants that can inhibit aromatase activity and elicit similar effects
(Petkov et al., 2009; Vinggaard et al., 2000). The initial deterministic
model included a feedback regulatory loop within the HPG axis to
odel: venous blood (A), gill blood (B), brain (C), ovary (D), liver (E), and rest of body (F). In
n of LH/FSH. In the gill (B), processes include: uptake and release of LH/FSH, E2, and FAD;
ease of FAD and E2; LH/FSH synthesis, release, and degradation; E2-mediated inhibition of
AD and E2; reversible binding of LH/FSH in blood to LH/FSH receptors on cell membrane
P19A_mRNA to ribosome (Rib); binding of amino acids (AA) to transfer RNA (tRNA);
degradation of AA, CYP19A_mRNA, and CYP19A; conversion of T into E2 catalyzed by
nd release of E2 and FAD; degradation of E2 and FAD. In the rest of body (F), processes
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mediate adaptive responses to endocrine-active chemical stressors by
controlling the secretion of luteinizing hormone (LH) and follicle-
stimulating hormone (FSH) from a generalized HP complex (Breen
et al., 2013). In the present paper, we build upon the previously
described model to address a key limitation in its predictive ability to
improve the congruence betweenmodel predictions and empirical data.

The primary focus of our previous work was on adaptive changes
(compensation) in plasma E2 concentrations during FAD exposure,
which resulted in a period of increased E2 production/concentration,
relative to controls, immediately following removal of the inhibitor
(an overshoot), particularly at lower FAD concentrations (Breen et al.,
2013). The main limitation of the previous HPG axis model was a large
overestimation of plasma E2 concentrations for higher FAD test
concentrations. In the present paper, we address this limitation by in-
vestigating protein synthesis of CYP19A. Because protein synthesis
and degradation are responsible for amounts of CYP19A available for
the conversion of T to E2, we extended the previous model by adding
the CYP19A protein synthesis pathway.

The contribution of this study is the extension of the previously de-
veloped HPG axis model (Breen et al., 2013). The extended model was
evaluated with measurements of plasma E2 and ovarian CYP19A
mRNA for eight FAD test concentrations. Comparing the model-
predicted and measured data provides insights into possible feedback
control mechanisms embedded in the HPG axis.

2. Materials and methods

2.1. FAD exposure

The model described in the present study incorporates data from
three experiments with fathead minnows exposed to FAD. The first of
these studies is described in detail by Villeneuve et al. (2009). Briefly,
sexually-mature fathead minnows (5–6 month old), obtained from an
onsite culture facility at the EPA Mid-Continent Ecology Division
(Duluth, MN), were exposed to 0, 3, or 30 μg FAD/L. Fadrozole was
delivered to 20 L tanks containing 10 L of test solution via a continuous
flow (approximately 45 ml/min) of UV-treated, filtered Lake Superior
water without use of a carrier solvent. Four male and four female
fathead minnows were exposed in each tank. The experiment was
initiated by transferring random groups of fish directly to tanks that
had been receiving a continuous flow of test solution for approximately
48 h. Addition of fish was staggered by replicate within each treatment
Table 1
Estimated parameters.

Parameter description Symbol

Basal synthesis rate of CYP19A mRNA ksyn_mRN

Maximum synthesis rate of CYP19A mRNA ksyn_mRN

Degradation rate of CYP19A mRNA kloss_mRN

Maximum synthesis rate of CYP19A kcat_CYP19
Michaelis constant for synthesis of CYP19A Km_syn_CY

Degradation rate of CYP19A kloss_CYP1
Inhibition constant of FAD Ki_FAD

Activation constant for synthesis CYP19A mRNA Ka_syn_mR

Total amount of ribosome Arib_total

Binding rate of ribosome with CYP19A mRNA krib_on
Releasing rate of ribosome with CYP19A mRNA krib_off
Synthesis rate of AA ksyn_AA
Degradation rate of AA kloss_AA
Binding rate of AA with tRNA ktRNA_on
Releasing rate of AA from tRNA ktRNA_off
Degradation rate of FAD kloss_FAD
Degradation rate of E2 kloss_E2
Zero-order synthesis rate of LHFSH k0_syn_LH
Degradation rate of LHFSH kloss_LHFS
Releasing rate of LHFSH kLHFSH
Inhibition constant of E2 Ki_E2

Releasing rate of LHFSH (blood) from LHFSH receptor (ovary) kLHFSH_of
Degradation rate of LHFSH kloss_LHFS
to permit all samples from a given exposure tank to be collected within
45 min of the desired exposure duration. Two tanks of four male and
four female fish were sacrificed after 1, 2, 4, and 8 d of exposure. After
8 days of exposure, remaining fish were held in control Lake Superior
water (no FAD) and sampled after 1, 2, 4, or 8 d of depuration. There
were two replicate tanks for each unique exposure condition
(i.e., combination of treatment and time point). Urine, plasma, liver,
gonad, brain, and pituitary samples were collected and a variety of
endocrine and toxicogenomic endpoints were examined. In total,
Villeneuve et al. (2009) reported results for over 15 different
endocrine-related variables. However, for the current modeling work,
major endpoints of interest were plasma concentrations of E2 and
ovarian expression of CYP19A. Notably, CYP19A protein concentrations
were not measured.

The second experiment (Villeneuve et al., 2013) was a follow-up to
the study described above, only with extended time-course. Briefly,
reproductively-mature fathead minnows were exposed to 0, 0.5, or
30 μg FAD/L using conditions similar to those described above. Fish
were either exposed continuously and sampled after 1, 8, 12, 16, 20,
24, or 28 d of exposure or exposed for 8 d, then held in a continuous
flow of clean Lake Superior water for an additional 4, 8, 12, 16, or
20 d. Various endpointswere analyzed, includingplasmaE2 and ovarian
CYP19A mRNA.

In a third experiment (Ralston-Hooper et al., 2013), fathead
minnows were exposed to 0, 0.04, 0.2, 1, or 5 μg FAD/L for 4 d under
conditions similar to those described above and various endpoints
were analyzed, including plasma E2 concentrations.

2.2. Mathematical model of the HPG-axis

The extended computationalmodel of theHPG axis for FAD-exposed
female fathead minnow described herein is a modification of our
previously-described HPG axis model (Breen et al., 2013). As does the
model of Breen et al. (2013), the extended model consists of six tissue
compartments: gill, brain, ovary, liver, venous blood, and rest of body
(Fig. 1). These compartments, which are involved in HPG axis signaling
and feedback control, are connected in a manner consistent with the
cardiovascular system of fish. The model includes a generalized
regulatory feedback loop within the HPG axis that mediates adaptive
responses to endocrine stress from FAD. The regulatory negative
feedback loop controls the secretion of gonadotropins (LH and FSH)
from the brain, which is regulated by amount of E2 secreted from
Compartment Value

A_basal Ovary 5.126 × 10−7 μmol-h−1

A_max Ovary 6.797 × 10−1 μmol-h−1

A Ovary 2.861 × 10−2 h−1

A_mRNA Ovary 5.741 × 10−2 h−1

P19A Ovary 6.471 × 104 μmol-L−1

9A Ovary 3.007 × 10−2 h−1

Ovary 4.273 × 10−3 μmol-L−1

NA Ovary 6.784 × 10−22 μmol-L−1

Ovary 9.551 × 10−3 μmol
Ovary 2.041 × 101 μmol−1-h−1

Ovary 1.840 × 10−5 h−1

Ovary 1.106 × 101 μmol-h−1

Ovary 2.103 h−1

Ovary 9.180 μmol−1-h−1

Ovary 7.082 × 10−1 h−1

Liver 5.585 × 10−1 h−1

Liver 4.327 h−1

FSH Brain 5.308 × 10−10 μmol-h−1

H Brain 1.416 × 102 h−1

Brain 2.503 × 10−3 h−1

Brain 4.812 × 10−5 μmol-L−1

f Venous Blood 7.792 × 10−1 h−1

H Venous Blood 2.795 h−1



Fig. 2.Model evaluation for control and three FAD concentrations (0.5 μg/L, 3 μg/L, and 30 μg/L). Model-predictionswere plotted as a function of days during pre-exposure (−15–0 days),
exposure to FAD (0–8 days), and post-exposure (8–33 days), and comparedwithmeasurements (mean± SD) for plasma E2 concentrations (A–D) and ovary CYP19A_mRNA fold changes
relative to controls (E–H). Model-predictions were compared with measurement data from two experiments: control data includes four sampling times during exposure and seven
sampling times post-exposure; 0.5 μg/L—two sampling times during exposure and five sampling times post-exposure; 3 μg/L—four sampling times during exposure and four sampling
times post-exposure; 30 μg/L—four sampling times during exposure and seven sampling times post-exposure.
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Fig. 3. Comparison of new and original model predictions for FAD 30 μg/L. Model-
predictions were plotted as a function of days during pre-exposure (−15–0 days),
exposure to FAD (0–8 days), and post-exposure (8–33 days), and compared with
measurements (mean ± SD) for plasma E2 concentrations. Model-predictions were
compared with measurement data from two experiments: 30 μg/L—four sampling times
during exposure and seven sampling times post-exposure.
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ovary. The descriptions of each tissue compartment were previously
reported by Breen et al. (2013), with the exception of CYP19A protein
synthesis in the ovary (Fig. 1D). Protein synthesis involves two major
processes: transcription and translation. In the nucleus, transcription
occurs when an RNA polymerase enzyme binds to DNA to start the
production of messenger RNA (mRNA). The mRNA then leaves the
nucleus and enters the cytoplasm to bind to ribosomes. In the
cytoplasm, amino acids (AA) bind to transfer RNA (tRNA) and are
transported to ribosomes. At the ribosome, translation occurs when a
series of tRNA molecules bind to mRNA to form a chain of AA that
creates a protein (Bruce et al., 2002; Campbell, 1996). In the extended
model, the rate of protein synthesis for CYP19A is a function of levels
of mRNA, ribosomes, tRNA, and AA. Once CYP19A mRNA is transcribed
from the CYP19A gene, it diffuses to a ribosome to form anmRNA–ribo-
some complex. The tRNAs bind to AA to form tRNA–AA complexes,
which bind to the CYP19A mRNA–ribosome complex for translation of
CYP19AmRNA and subsequent synthesis of the CYP19A protein. In the
ovary compartment, the model has zero-order synthesis and first-
order degradation of AA, and translation of CYP19A is described by
Michaelis–Menten kinetics (Jewett et al., 2009). The time-varying
concentrations of substrates are described by dynamic mass balances.
We can express the dynamic mass balance for the substrates in the
compartment y with volume Vy as:

Vy
dCx;y

dt
¼ Px;y−Ux;y−Dx;y þ Ix;y−Sx;y ð1Þ

where Cx,y is the concentration of substrate x in compartment y, Px,y is
the production rate of substrate x in compartment y, Ux,y is the utiliza-
tion rate of substrate x in compartment y, Dx,y is the degradation rate
of substrate x in compartment y, Ix,y is the import rate of substrate x
into compartment y, and Sx,y is the secretion rate of substrate x from
compartment y. The first two terms in the right side of Eq. (1) represent
the net metabolic reaction rate of substrate x. The last two terms
represent the net uptake or release rate of substrate x in compartment
y. The complete set of equations for the model is provided in the
Supplementary Data.

2.3. Parameter estimation

The model consists of physiological and biochemical parameters,
including tissue compartment volumes, blood flow rates, equilibrium
partition coefficients, and biochemical reaction rates (i.e. transcription,
translation, metabolism, transport, and degradation). As in the previous
model (Breen et al., 2013), the extended model utilizes measured
volumes of the major tissue compartments (ovary, liver, brain) and
the whole body, and determined physiological parameter values from
the literature. Based on experimental results (Villeneuve et al., 2013),
the equilibrium tissue:blood partition coefficients for E2, and
blood:water and tissue:blood partition coefficients for FAD were
assumed to be one. In the extended model, there are 28 biochemical
parameters affecting the dose–response and time-course behaviors of
CYP19A mRNA and E2 in FAD-exposed animals; literature-reported
values were used for five parameters as in the previous model, and 23
parameters were estimated using the mean E2 concentrations from
the fathead minnow studies. We utilized measured plasma E2 data
from the first and second experiments for parameter estimation and
ovarian CYP19A mRNA data from the first and second experiments,
along with plasma E2 data from the third experiment for model
validation. The definitions and values of physiological constants and
fixed biochemical parameters, and the measured E2 and CYP19A
mRNA data were previously described in detail by Breen et al. (2013).

The ordinary least squares method was used to estimate the fol-
lowing 23 biochemical parameters from the fathead minnow E2
time-course data (see Table 1): 15 parameters in the ovary compart-
ment (ksyn_mRNA_basal, ksyn_mRNA_max, kloss_mRNA,Vmax_syn_CYP19A,
Km_syn_CYP19A, kloss_CYP19A, Ki_FAD, Ka_syn_mRNA, krib_on, krib_off, ksyn_AA,
kloss_AA, Arib_total, ktRNA_on, ktRNA_off), two parameters in the liver com-
partment (kloss_FAD, kloss_E2), four parameters in the brain compart-
ment (k0_syn_LHFSH, kloss_LHFSH, kLHFSH, Ki_E2), and two parameters in
the venous blood compartment (kLHFSH_off, kloss_LHFSH). Let nd be the
number of time points in the E2 time-course data for the dth FAD
dose (including control); CE2 ,bloodd , i be the measured E2 plasma con-

centrations for the dth FAD dose at the ith time; CE2;bloodðti;Cd
FAD; k

*

Þ
be the model-predicted concentrations of E2 in the venous blood
compartment at the ith time, ti, for the dth FAD dose (including

control), Cd
FAD, with parameter set k

*

for d = 1,2,3,4, and i = 1,…

nd. Then, the least squares estimate k� is the parameter vector k
*

which minimizes the cost function

Jðk
⇀
Þ ¼ ∑4

d¼1∑
nd
i¼1 Cd;i

E2;blood−C ti;C
d
FAD; k

⇀
� �� �2

: ð2Þ

Parameters were estimated with an iterative nonlinear optimization
algorithm using MATLAB R2010a (Mathworks, Natick, MA, USA)
software. We chose the Nelder–Mead simplex method (MATLAB
function: fminsearch) for its relative insensitivity to the initial parame-
ter values as compared to other common methods, such as Newton's
method, and its robustness to discontinuities (Nelder and Mead,
1965). We confirmed convergence to a solution after the parameter
search terminated.

2.4. Sensitivity analysis

We performed a sensitivity analysis to examine model parameter
uncertainty using a previously described method (Breen et al., 2013).
The key purpose of sensitivity analysis is to identify the main contribu-
tors to the variation in the model outputs by ordering the parameters;
parameters with high sensitivity are more important for the model
output than parameters with low sensitivity. Briefly, the sensitivity
function relates changes of the model output to changes in the model
parameters. We calculated the relative sensitivity functions
RE2,blood,ki(t) and RmRNA,ovary,ki(t) with respect to the parameters ki for
each of the model-predicted concentrations CE2, blood and fold changes
of CYP19A mRNA in the ovary compartment FmRNA,ovary, respectively.
MATLAB was used to numerically solve the partial derivatives of
RE2,blood,ki(t) and RmRNA,ovary ,ki(t) for control and each FAD dose. To
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rank the relative sensitivities, we calculated the L2 norm across time for
each relative sensitivity function as described by

RE2;blood;ki

�� ��
ℒ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
RE2;blood;ki tð Þ�� ��2dt

s
ð5Þ

and

RmRNA;ovary;ki

�� ��
ℒ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
RmRNA;ovary;ki tð Þ�� ��2dt

s
: ð6Þ
Fig. 4.Modeled dose–response during FAD exposure. Model predictions were plotted as a
function of FAD concentrations for venous E2 concentrations (A,C) and ovary
CYP19A_mRNA fold changes relative to controls (B) during exposure to FAD on days 1,
4, and 8 (2024, 2096, and 2192 h). For day 4 (C), measured venous E2 concentrations
for five FAD concentrations (0, 0.04 0.2, 1, 5 μg/L) with n = 11 or 12 were plotted with
model predictions. Same model predictions are shown in A and C for FAD
concentrations between 0 and 5.5 μg/L.
3. Results

3.1. Mathematical model of HPG-axis

Table 1 shows the estimated biochemical parameter values
determined by fitting the model predictions to the measured mean
plasma E2 concentrations for all four FAD doses from the two time-
course studies. The time for convergence to the solution for the
nonlinear parameter estimation was typically around 4 h on an Intel
Core 2 Duo processor using MATLAB.

For plasma E2 concentrations, we compared the model-predicted
concentrations with the time-course measurements. Overall, the
model-predicted E2 concentrations correspond closely to the mean
time-course measurements for all four doses (Fig. 2A–D). For the high
FAD dose (30 μg/L), the extended model performed markedly better
than the previous model (Fig. 3, Breen et al., 2013), the differences of
an overestimate/underestimate from the previous model are reduced
by 50, 17, 609, 222, 107, 43, 14, and 3% at 1, 2, 9, 10, 12, 16, 20, and
28 d, respectively. Also, the Euclidean norm of the errors for the extend-
ed model, as compared to previous model, was reduced from 0.102 to
0.017 μg/L. The extended model better captured the mean time-course
behavior for the 30 μg/L FAD treatment, which was substantially
reduced within 1 d of exposure to FAD, remained reduced throughout
the exposure period, and rebounded at 2 d post-exposure, before
returning to control levels following 8 or more d of recovery in clear
water (Fig. 2D). For the other FADdoses, the extendedmodel performed
similarly to the original model (Breen et al., 2013). The Euclidean norms
of the errors for the extended model were 0.015, 0.015, 0.038, whereas
the previous model were 0.015, 0.016, 0.035 for the control, 0.5, and
3 μg/L FAD doses, respectively. In the 3 μg FAD/L treatment, the
Fig. 5.Model predictions plotted as a function of FAD concentration and time during pre-
exposure (−15–0 days), exposure to FAD (0–8 days), and post-exposure (8–33 days) for
venous E2 concentrations (A) and ovary CYP19A_mRNA fold changes relative to controls
(B).
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extended model continued to capture the plasma E2 compensation
during exposure, and the overshoot and return to control levels once
the FAD exposure was terminated (Fig. 2C).

Fig. 4A shows themodel-predicted venous E2 dose–response during
FAD exposure on d, 1, 4, and 8. For FAD doses between 0 μg/L and
10 μg/L, the model predictions monotonically decreased across dose,
with FAD exposure on d 1 having the lowest venous E2 concentration
and d 8 having the highest venous E2 concentration, the same as the
original model predicted. The model predictions continued to decrease
monotonically across doses for FAD dose greater than 10 μg/L, with E2
concentrations on d 1 decreasing slower than on d 4 and 8. As a result,
FAD exposure on d 1 had the highest venous E2 concentration and d 4
and 8 had similar venous E2 concentrations at higher FAD treatments.
In contrast, the previous model predictions had the lowest venous E2
concentration on FAD exposure d 1 and the highest venous E2
concentration on FAD exposure d 8 at higher FADdoses. Fig. 5A provides
a summary of model predictions for venous E2 concentrations plotted
as a function both of FAD concentration and time.
Fig. 6.Relative sensitivities formodeled E2 plotted as a function of the 26 biochemicalmodel par
the L2 norm of the relative sensitivities across time during exposure (0–8 days; A) and post-exp
lead to changes in model outputs.
Wealso compared themodel-predicted andmeasured ovary CYP19A
mRNA fold changes to validate our extended model. The model-
predicted ovary CYP19A mRNA fold change corresponds well to the
average time-course behavior of the measurements for all four doses
(Fig. 2E–H). Fig. 4B shows the model-predicted ovary CYP19A mRNA
dose–response for FAD exposure on d 1, 4, and 8. Themodel predictions
monotonically increased across dose, with the lowest ovary CYP19A
mRNA predicted for FAD exposure on d 1: similar to the original
model. For d 4 and 8, the model predicted similar ovary CYP19AmRNA
fold changes as a function of FAD dose, whereas the previous model
predicted higher ovary CYP19A mRNA fold changes on d 4 than on d 8
(Breen et al., 2013). Fig. 5B provides an integrated summary of the
predictions for ovary CYP19A mRNA fold changes are plotted both as a
function of FAD concentration and time.

Model predictionswere compared to plasma E2 concentrations from
the 4-d exposure study to further validate our model: this dataset was
not used in the model development. Even though all five FAD doses
(0, 0.04, 0.2, 1, and 5 μg FAD/L) used for model validation differed
ameters for control and three FAD concentrations (0.5, 3, and 30 μg/L). Each bar represents
osure (8–33 days; B). The values indicate the degree towhich changes in parameter values
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from the FAD doses used for model calibration, the model-predicted
dose–response curve for venous E2 corresponds closely to measured
plasma E2 (Fig. 4C).
3.2. Sensitivity analysis

The relative sensitivities for modeled E2 and CYP19A mRNA,
respectively, with respect to each of the 26 biochemical model parame-
ters are shown for the control and three FAD test concentrations (0.5, 3,
and 30 μg/L) during exposure and post-exposure (Figs. 6 and 7). Overall,
E2 (Fig. 6) and CYP19AmRNA (Fig. 7) are highly to moderately sensitive
to 17 model parameters during exposure and post-exposure, including
11 parameters associated with CYP19A protein synthesis; six
parameters, ksyn_mRNA_basal, Ka_syn_mRNA, kloss_FAD, kloss_LHFSH, krib_on,
krib_off are insensitive. Of these six parameters, four (ksyn_mRNA_basal,
Ka_syn_mRNA, kloss_FAD, kloss_LHFSH) are also not sensitive for E2 and
CYP19A mRNA in the original model (Breen et al., 2013).
Fig. 7. Relative sensitivities for modeled CYP19A_mRNA plotted as a function of the 26 biochem
bar represents the L2 norm of the relative sensitivities across time during exposure (0–8 days;
parameter values lead to changes in model outputs.
4. Discussion

Breen et al. (2013) developed amechanistic mathematical model for
the HPG axis in female fathead minnows to predict the dose–response,
time-course behaviors for endocrine effects of the aromatase inhibitor,
FAD. The model included a regulatory feedback loop within the HPG
axis that facilitates adaptive responses in plasma E2 concentrations
and CYP19A mRNA to FAD. The previous model captured the adaptive
changes in plasma E2 concentrations occurring during exposure, and
the overshoot observed post-exposure for the 3 μg/L FAD dose, along
with the up-regulation of ovary CYP19A mRNA production occurring
during exposure for both the low (3 μg/L) and high (30 μg/L) FAD
treatment groups. However, themodel did not provide good predictions
of plasma E2 concentrations for the high dose (30 μg/L FAD) treatment,
which was significantly reduced throughout the exposure period and
substantially different from the response at the lower FAD concentra-
tions. These experimental data and modeling results prompted us to
refine the model in the current study to examine the hypothesis that
ical model parameters for control and three FAD concentrations (0.5, 3, and 30 μg/L). Each
A) and post-exposure (8–33 days; B). The values indicate the degree to which changes in
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an additional biologicalmechanismwasneeded. Since protein synthesis
controls the amount of CYP19A involved in the conversion of T into E2,
we investigated protein synthesis as a possible factor influencing
compensation. Specifically, we extended the computational model of
the HPG axis to include a pathway for protein synthesis to address the
main limitation of the previous HPG axis model (Breen et al., 2013).
We modeled the pathway for protein synthesis accounting for levels
of mRNA, ribosomes, tRNA, and AA, which control the rate of protein
synthesis for CYP19A. The extended model was evaluated with
measurements of plasma E2 data and ovarian CYP19A mRNA for eight
FAD test concentrations. The results support our hypothesis. By
including a pathway for protein synthesis of CYP19A, the extended
model significantly improved the model fit for the dynamic E2 concen-
trations at high FAD dose (30 μg/L FAD) treatment, while maintaining
good model fits of dynamic E2 concentrations for controls and the
lower doses (0.5 and 3 μg/L FAD), despite significant differences in
data behavior between high and low doses. The extended model was
also capable of predicting the dynamic CYP19A mRNA fold changes for
all four doses during the two time-course studies, and the venous E2
dose–response during a 4-d exposure at 0, 0.04, 0.2, 1, and 5 μg FAD/L.
Moreover, our sensitivity analysis indicates that CYP19A protein
synthesis plays an important role in the revised model, since both E2
and CYP19A mRNA were highly to moderately sensitive to the
parameters associated with the protein synthesis.

Our study demonstrates that the detailed modeling of protein
synthesis improves the model performance by including limitation for
CYP19A protein induction for high FAD concentrations. Since AA,
tRNA, and ribosomes will be in excess under normal conditions, as
they are needed for synthesis of thousands of proteins in the cells
(Bruce et al., 2002; Campbell, 1996), AA supply and the abundance of
tRNA and ribosomes may become limiting only at very high protein
abundance. One biologically realistic hypothesis for the limitation for
CYP19A protein induction is that under stress conditions, such as high
FAD concentrations, the total stress proteins rise to an abundance that
is substantial compared to the total CYP19A proteins. Stress proteins
are a suite of highly conserved proteins, which are produced in the
cell under the exposure to stressful environmental conditions, such as
chemical exposures, elevated temperatures, ultraviolet lights (Sanders
and Martin, 1993; Gupta et al., 2010). One study showed that stress
proteins concentrations were elevated, relative to laboratory controls,
in mussels and fish tissue when they were exposed to chemicals in
the environment (Sanders and Martin, 1993). We hypothesize that
under high FAD concentrations, the production of stress proteins are
upregulated as part of the stress response, which results in competition
of available AA, tRNA, and ribosomes to limit CYP19A protein induction.
While our results indicate that the availability of amino acids could be
rate-limiting in the production of new CYP19A protein, it should be
noted that other steps associated with the regulation of protein
synthesis but not explicitly represented in the model, could also be
rate-limiting. For example, regulation of transcription of the aromatase
gene is multifactorial, and mRNA is processed to remove introns and
interacts with miRNA. A future study with collection of stress protein
concentrations time course data and inclusion of stress protein
pathways in our model could be used to validate our hypothesis.

5. Conclusions

The extended model contributes to ongoing efforts to understand
and simulate biological responses to endocrine active chemicals, includ-
ing aromatase inhibitors. Development of a computational system
model that incorporates this additional biological mechanism provides
a better understanding of possible adaptive responses, which can refine
descriptions of dose–response time-course behaviors that differ
substantially from low dose to high dose regimes. The knowledge
obtained from iterations in model development, refinement, and
empirical testing can help us to better understand the biology
underlying toxicological responses to endocrine active chemicals, and
can be applied to help reduce the uncertainty of dose–response assess-
ments in support of quantitative risk assessments, a need identified as
critical to supporting new approaches to regulatory toxicology
(National Research Council, 2007).
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