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Abstract. An approach to modeling the impact of disturbances in an agricul-
tural production network is presented. A stochastic model and its approximate
deterministic model for averages over sample paths of the stochastic system
are developed. Simulations, sensitivity and generalized sensitivity analyses are
given. Finally, it is shown how diseases may be introduced into the network
and corresponding simulations are discussed.

1. Introduction. The current production methods for livestock follow the just-in-
time philosophy of manufacturing industries. Feedstock and animals are grown in
different areas. Animals are moved from one farm to another, depending on their
age. Unfortunately, shocks propagate rapidly through such systems; an interruption
to the feed supply has a much larger impact when farms have minimal surplus
supplies in-stock than when they have large reserves. The just-in-time movement
of animals between farms serves as another vulnerability. Stopping movement of
animals to and from a farm with animals infected by a disease will have effects that
quickly spread through the system. Nurseries supplying the farm will have nowhere
to send their animals as they grow up. Finishers and slaughterhouses supplied by
the farm will have their supply interrupted.

The devastating foot-and-mouth disease (FMD) that hit the United Kingdom
(UK) in 2001 lead to the slaughter of millions of animals. The outbreak shook
many Western nations as citizens watched a nation with an advanced animal health
surveillance and response system fail to get FMD under control, in part because
the UK was unable to mount a rapid response in the face of modern agricultural
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marketing systems [15]. In an effort to eradicate the disease, the marketing chan-
nels were stopped, leaving uninfected producers with no income to maintain their
livestock and no means to move them to locations where feed, shelter, and other
support were available. As a result, between six million and ten million animals
were destroyed in the UK over seven months, with more than one-third of those
animals being destroyed for welfare reasons [41]. Two years after the outbreak, ani-
mal agriculture in the UK was still declining, a chilling postscript to the widespread
infrastructure damage FMD had wrought on the nation [37].

More recently, the world has witnessed the apparent failure of widespread na-
tional and international plans for using animal destruction to stem the spread of
the highly pathogenic H5N1 strain of avian influenza. In a process frighteningly
reminiscent of the UK FMD experience, the programs have also allowed domes-
tic markets within and beyond affected countries to suffer. Global consumption of
poultry has dropped enough to cause US domestic producers (e.g., Tyson, Pilgrim’s
Pride, et al.) to absorb decreased demand and decreased prices. This drop has
translated to decreases, as well, in non-poultry markets, exacerbating the market
effects of a disease not even present in the Western hemisphere [19]. It has be-
come painfully apparent that in the large-scale, interdependent, and highly mobile
animal agriculture industry of the USA, the unintended consequences and market
ripple effects of a disease incursion into our system could be even more severe than
what was witnessed in the UK in 2001 and across Europe in 2005-6, and could
induce decision-makers to call for even more draconian measures than previously
seen. What is needed is a new view of how our emergency response programs
might affect modern animal agriculture, a view that allows workers to assess the
potential for other prevention strategies and responses. The view should also al-
low analysts to identify bottlenecks in the food and feed supply chain, and to test
potential mitigation tools, procedures, and practices to increase the resilience of
animal agriculture to catastrophic animal diseases.

This paper presents initial statistical and mathematical modeling ideas to ad-
dress the above issues, using the North Carolina swine industry’s potential response
to FMD as an example. We focused our attention on the North Carolina swine in-
dustry because it is the second largest swine industry in the United States, and
because it is local to us. Our goal was to develop a model that could be used to
investigate how small perturbations to the agricultural supply system would affect
its overall performance. A hurricane that throttles inter-farm transportation for a
short period, or a disease outbreak that spreads through distribution channels are
example causes of the perturbations of interest. In the former case, the just-in-time
delivery systems may not provide enough slack to absorb the shock. In the latter
case, strategies that involve destruction of all livestock in an infected branch of the
system may be overly harsh; a more moderate response may be as effective without
the high toll on the infrastructure.

We model a simplified swine production network in North Carolina containing
four levels of production nodes: growers/sows (Node 1), nurseries (Node 2), finish-
ers (Node 3), and processing plants/slaughterhouses (Node 4). At grower or sow
farms (Node 1), the new piglets are born and typically weaned three weeks after
birth. The three-week old piglets are then moved to the nursery farms (Node 2)
to mature for another seven weeks. They are then transferred to the finisher farms
(Node 3), where they grow to full market size, which takes about twenty weeks.
Once they reach market weight, the matured pigs are moved to the processors
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(slaughterhouses) (Node 4). Pork products then continue through wholesalers to
consumers. There are also several inputs to the system which we will not consider,
such as food, typically corn grown in the Midwest. There are several types of breed-
ing farms where purebred stock are raised; these are typically crossed to produce
hybrid strains for pork production.

Our paper is organized as follows. In Section 2, we formulate a nonlinear stochas-
tic model for our agricultural network and show how it can be converted to an
equivalent (in a sense made precise below) deterministic differential equation model.
This deterministic model readily lends itself to simulations and sensitivity analysis
techniques. In Section 3 we present numerical simulations of the production model
(without perturbations such as infectious disease), and carry out a sensitivity anal-
ysis of the model. Simulations of the model in the presence of an infectious disease
are presented in Section 4. Finally, in Section 5 we give our conclusions and remarks
for future work.

In addition to the development of models for a typical production network per-
mitting perturbations, a significant contribution in this paper is the demonstration
of stochastic, mathematical and computational methodology that is available to do-
main scientists, statisticians and applied mathematicians working in a concerted
team effort on complex problems of the type exemplified here. The coauthors of
this paper constituted such a team organized under the auspices and with the sup-
port of the Statistical and Applied Mathematical Sciences Institute (SAMSI) as a
year-long working group in its recent research program on National Defense and
Homeland Security.

2. Modeling. We consider stochastic models to track an agricultural network. We
are interested in how the parameters used in the model affect the overall capacity
of a network and in how one discerns the existence and location of any bottlenecks.
With deterministic models, one can answer the first question with a sensitivity
analysis. Thus, after developing a typical stochastic production model, we also
show how to obtain its deterministic approximation. We then demonstrate how
to superimpose a simple contagious disease model on the production model that
allows simulation of dynamics and spread of FMD through a production chain.

2.1. Basic Model. We consider a simplified swine production network with four
aggregated nodes: sows (Node 1), nurseries (Node 2), finishers (Node 3), and
slaughterhouses (Node 4). Our goal is to study the effects of perturbations within
the network. This can be done by affecting either the nodes or the transitions
between nodes directly or indirectly. For instance, a problem with the breeding
farms would result in a reduction of sows available for producing new piglets. This
would result in a reduced rate of transition from Node 1 to Node 2, since we
could not grow as many piglets. We could then track the effect of this through our
network.

Although unavoidable in actual production processes, we assume in our example
that there are no net losses in the network (i.e., the total number of pigs in the
network remains constant) and that the only deaths occur at the slaughterhouses.
Thus we assume that the number of processed pigs per day at the slaughterhouses
is equal to the number of newborn piglets per day at the growers. We can model
reduced birth-rates by reducing the rate at which piglets move to the nurseries.
This leads us to deal with a closed network. We note that this approximation is
realistic when the network is efficient and operates at or near full capacity (i.e,
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when the number of animals removed from the chain are immediately replaced by
new production/growth, avoiding significant idle times). Our closed network model
for the swine production is summarized schematically in Figure 1.

SlaughterFinisherNurserySows

N4N3N1 N2

Figure 1. Aggregated agricultural network model.

Each node with corresponding population number Ni, i = 1, . . . , 4, in Figure 1
represents an aggregation of all the production units corresponding to that level in
the production network. Given a specific production network, any of the four levels
of the chain may be broken into its constituent units (e.g., farms), and analyzed in
detail as a separate subnetwork. The directed edges between the nodes represent
the movement of the pigs through the network. The rate is determined by the pigs’
residence time, the number of pigs at each node, and the capacity constraints at the
corresponding nodes. Let Li denote the capacity constraint at node i, i = 1, . . . , 4.
Since we have a closed network, it is assumed that there is no capacity constraint
at Node 1, and therefore we take L1 = ∞. We also define Sm to be the maximum
exit rate at Node 4; i.e., the maximum killing capacity at the slaughter house.
The residence times at each node, together with the capacity constraints and the
slaughterhouse killing capacity, based on very rough estimates of swine production
in North Carolina [1], are given in Table 1.

Table 1. Network parameters based on swine production in NC.

Name Sows Nursery Finisher Slaughter
Node N1 N2 N3 N4
Piglet residence
time (days) 21(N1→N2) 49(N2→N3) 140(N3→N4) 1(N4→N1)

Assumed capacity
(in thousands) ∞ 825 2300 20

2.2. Stochastic and Deterministic Models. We model the evolution of the
food production network shown in Figure 1 as a continuous time discrete state
density dependent jump Markov Chain (MC) [3, 21] with a discrete state space
embedded in an R4 non-negative integer lattice L. The state of this MC at time t
is denoted by X(t) = (X1(t), . . . , X4(t)), where Xi(t) is the number of pigs at node
i at time t, i = 1, . . . , 4.

The rates of transition of X(t) are nonlinear functions λi : L → [0,∞) for
i = 1, . . . , 4, and for x ∈ L are given by:

λ1(x) := q1(x1 − 1, x2 + 1, x3, x4) = k1 x1 (L2 − x2)+
λ2(x) := q2(x1, x2 − 1, x3 + 1, x4) = k2 x2 (L3 − x3)+
λ3(x) := q3(x1, x2, x3 − 1, x4 + 1) = k3 x3 (L4 − x4)+
λ4(x) := q4(x1 + 1, x2, x3, x4 − 1) = k4 min(x4, Sm) (1)
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where ki, i = 1, . . . , 4, is proportional to the service rate at node i; Li, i = 2, 3, 4,
is the buffer size (capacity constraint) at node i and Sm is the slaughter capacity
at node 4 as discussed above. For any real z, the symbol (z)+ is defined as the
non-negative part of z, i.e., (z)+ = max(z, 0). Then q1(x1 − 1, x2 + 1, x3, x4) is
given by

q1(x1 − 1,x2 + 1, x3, x4) ≡

lim
h→0+

Pr[X(t + h) = (x1 − 1, x2 + 1, x3, x4)|X(t) = (x1, x2, x3, x4)]
h

.

The other qi are given similarly.
The simple model (1) is formulated under the following assumptions and hy-

potheses. First it is assumed that the transportation rates qi, i = 1, 2, 3, are pro-
portional to xi (Li+1− xi+1)+, the product of the number of animals available and
the available capacity at the next node. If no capacity is available, the rate is
taken as zero. The rate at the slaughter house (Node 4) is the maximum Sm if a
sufficient number of animals is available; otherwise all animals present at the node
are slaughtered on that day. Finally, it is assumed that the network is at or near
steady-state and maximum efficiency in that the slaughter rate at Node 4 is the
same as the input at Node 1 (this is represented schematically in Figure 1 by the
arrow from Node 4 to Node 1). This results in the rate dynamics (9) below with
the output rate at Node 4 the same as the input rate at Node 1.

We remark that the product nonlinearities xi (Li+1−xi+1)+ of (1) where trans-
portation occurs more rapidly the further the node level is from capacity (i.e.,
the system reacts more rapidly to larger perturbations from capacity) are only
one possible form for these terms. One could also reasonably argue for alterna-
tive terms of the form xi χi+1 where χi+1 is the characteristic function for the set
{(Li+1 − xi+1) > 0}, so that the transportation rate from a node depends only on
the number available at that node so long as capacity at the next node has not
been reached. We remark that in this case the sensitivity analyses below are more
difficult because of a lack of continuity of the dynamics in the system equations.

Let Ri(t) i = 1, . . . , 4, denote the number of times that the ith transition oc-
curs by time t. Then Ri is a counting process with intensity λi(X(t)), and the
corresponding stochastic process can be defined by

Ri(t) = Yi

( ∫ t

0

λi(X(s))ds
)
, i = 1 . . . , 4, (2)

where the Yi are independent unit Poisson processes. That is, sample paths ri(t)
of Ri(t) are given in terms of sample paths x(t) of X(t) by

ri(t) = Yi

( ∫ t

0

λi(x(s))ds
)
, i = 1 . . . , 4. (3)

We write Ri in this form to illustrate that λi is a rate of the corresponding counting
process.

Let ei, i = 1, . . . , 4, be standard basis vectors of R4 and define, for i incremented
by one modulo 4, the vectors

νi = e(i+1)(mod4) − ei i = 1, 2, . . . , 4,
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which represent the vector of changes in system counts at ith transition. We write
the state of the system at time t as

X(t) = X(0) +
∑

i

Ri(t)νi = X(0) + νR(t), (4)

where ν is the matrix with rows given by the νi, and R(t) is the (column) vector
with components Ri(t). In the chemical literature, the matrix νT is often referred
to as the stoichiometric matrix [29]. More specifically, we have

X1(t) = X1(0)−R1(t) + R4(t)
X2(t) = X2(0) + R1(t)−R2(t)
X3(t) = X3(0) + R2(t)−R3(t)
X4(t) = X4(0) + R3(t)−R4(t). (5)

The above system typically cannot be solved for a stationary distribution, and
an empirical approach based on the so-called Gillespie algorithm [29] can be used to
investigate the long-term behavior of the system (see Section 3.2). The approximate
large-population behavior of an appropriately scaled system may be also analyzed
with macroscopic deterministic rate equations, as we shall explain next (the original
theory is due to Kurtz and is discussed in [21] and the references therein).

Let N be the total network or population size. If N is known we may consider
the animal units per system size or the units concentration in the stochastic process
CN (t) = X(t)/N with sample paths cN (t). For large systems, this approach leads
to a deterministic approximation (obtained as solutions to the system rate equation
defined below) to the stochastic equation (4), in terms of c(t), the large sample size
average over sample paths or trajectories cN (t) of CN (t).

We rescale the rate constants ki, Li and Sm as follows:

κ4 = k4, κi = Nki, i = 1, 2 or 3,

sm = Sm/N, li = Li/N. (6)

According to Equation (1), this rescaling implies that

λi(x) = κi xi(Li+1 − xi)+/N = Nκi cN
i (li+1 − cN

i )+ i = 1, 2, 3,

and
λ4(x) = κ4 min(x4, Sm) = Nκ4 min(cN

4 , sm).

Recall that for large N the Strong Law of Large Numbers (SLLN) for the Poisson
Process Y implies Y (Nu)/N ≈ u [30]. One can use this fact, along with the
rescaling of the constants as given above, to argue that sample paths ri(t) for the
counting process (2) defined in terms of the sample paths x(t) or cN (t) = x(t)/N
may be approximated for large N in terms of the deterministic variables c(t), the
averages over sample paths or trajectories cN (t) of CN (t), by

r
(N)
i (t) =

1
N

ri(t) =
1
N

Yi

( ∫ t

0

λi(x(s))ds
)

=
1
N

Yi

(
N

∫ t

0

κic
N
i (s)(li+1 − cN

i+1(s))+ ds
)

≈
∫ t

0

κi ci(s)(li+1 − ci+1(s))+ ds for i = 1, 2, 3, (7)
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and similarly

r
(N)
4 (t) =

1
N

r4(t) ≈
∫ t

0

κ4 min(c4(s), sm) ds.

For a full and rigorous discussion of this “approximation in mean,” see Chapters
6.4 and 11 of [21] and Chapter 5 of [3]. The averages c(t) satisfy a system of
deterministic ordinary differential equations which can be heuristically derived by
beginning with Equation (5). Upon dividing both sides of each equation by N
and applying the above, we obtain the rate equations, (i.e., the system of integral
equations approximating via the SLLN the original stochastic system), as follows:

cN
1 (t) = c1(0)− r

(N)
1 (t) + r

(N)
4 (t)

≈ c1(0)−
∫ t

0

κ1c1(s)(l2 − c2(s))+ ds +
∫ t

0

κ4 min(c4(s), sm) ds

cN
2 (t) = c2(0) + r

(N)
1 (t)− r

(N)
2 (t)

≈ c2(0)−
∫ t

0

κ2c2(s)(l3 − c3(s))+ ds +
∫ t

0

κ1c1(s)(l2 − c2(s))+ ds

cN
3 (t) = c3(0) + r

(N)
2 (t)− r

(N)
3 (t)

≈ c3(0)−
∫ t

0

κ3c3(s)(l4 − c4(s))+ ds +
∫ t

0

κ2c2(s)(l3 − c3(s))+ ds

cN
4 (t) = c4(0) + r

(N)
3 (t)− r

(N)
4 (t)

≈ c4(0) +
∫ t

0

κ3c3(s)(l4 − c4(s))+ ds−
∫ t

0

κ4 min(c4(s), sm) ds. (8)

Upon approximating the cN
i (t) on the left above by the ci(t) and differentiating

the resulting equations, we find that the integral equation system is equivalent to
a system of ordinary differential equations for c(t) ∈ R4 given by

dc1(t)
dt

= −κ1c1(t)(l2 − c2(t))+ + κ4min(c4(t), sm)

dc2(t)
dt

= −κ2c2(t)(l3 − c3(t))+ + κ1c1(t)(l2 − c2(t))+

dc3(t)
dt

= −κ3c3(t)(l4 − c4(t))+ + κ2c2(t)(l3 − c3(t))+

dc4(t)
dt

= −κ4min(c4(t), sm) + κ3c3(t)(l4 − c4(t))+ (9)

with the initial conditions c(0) = c0. As we shall see in the next section, solutions
of these equations yield quite good approximations to the sample paths of the
stochastic system.

3. Computations and Model Comparison.

3.1. Model Parameter Values. To carry out numerical simulations and to com-
pare the results of the stochastic and deterministic models (equations (5) and (9),
respectively), we must choose reasonable values for all model parameters. We note
that our paper focuses on methodological issues and, for confidentiality and pro-
prietary reasons, only limited information on the swine production network was
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available to us. Thus some of these parameter values may be only rough approxi-
mations of those that might be obtained using inverse problem techniques with data
from actual production networks [1]. Consequently, the subsequent discussions in
this paper are in no way an attempt to validate the above models. Nonetheless,
we believe that the order-of-magnitude approximate parameter values we are using
here are sufficient to allow us to develop and demonstrate effective use of methods
and techniques which could be used with actual production network based param-
eters.

The parameters of the stochastic model, with the exception of the transition rate
constants ki, are given in Table 1. From the expressions for the transition rates
(1), we see that the residence times, ti, that pigs spend at node i are given by

ti =
1
ki

1
(Li+1 −Xi+1(t))

for i = 1, 2 or 3, (10)

and t4 = 1/k4 = 1. As discussed above, the nonlinear form of the transition rates
(1) means that the residence time at a given node depends on how far the following
node is below its capacity. Consequently, we determine the ki by assuming that the
given residence times pertain to the network in its equilibrium state.

Considering the deterministic model equations (9), we see that, if there is to
be a flow through the system, the equilibrium population sizes N∗

i = Nc∗i at each
node must be less than the capacities of the nodes. It is then straightforward to
see that the equilibrium numbers of individuals at each of the first three nodes are
proportional to the ti. This makes intuitive sense, since no loss occurs as individuals
move between nodes, and so, at equilibrium, the relative residence times must equal
the relative numbers of individuals at the nodes. This argument need not apply
to the slaughter node, however, since individuals will spend longer there than the
specified one-day residence time if the equilibrium value N∗

4 is greater than Sm.
The flow rate from node four back to node one is the smaller of N∗

4 and Sm, and
so we have that

(N∗
1 , N∗

2 , N∗
3 , N∗

4 ) =
{

(t1N∗
4 , t2N

∗
4 , t3N

∗
4 , N∗

4 ) if N∗
4 ≤ Sm

(t1Sm, t2Sm, t3Sm, N∗
4 ) otherwise. (11)

Notice that solving for the equilibrium of the deterministic model does not give us
the value of N∗

4 : since the network is closed, the total size of the population is equal
to its value at the initial time. The values of the ki, for i = 1, 2 and 3, are then
given by

ki =
1

ti
(
Li+1 −N∗

i+1

) . (12)

The parameter values and the initial states for the system (5) are tabulated in Table
2.

To obtain the parameters we use in our deterministic simulations we simply
rescale the parameters in Table 2 by the total network size N = X1(t0) + X2(t0) +
X3(t0) + X4(t0) = 3, 165, 000, using equation (6) and ci(t0) = Xi(t0)/N for i =
1, . . . , 4. The results are given below in Table 3.
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Table 2. Aggregated agricultural network model: Parameters for
stochastic simulations, together with our chosen initial conditions.
All numbers of pigs are given in thousands here.

Parameters Definition Values Units
k1 transition rate at node 1 1/(90 · 21) 1/(pigs·days)
k2 transition rate at node 2 1/(200 · 49) 1/(pigs·days)
k3 transition rate at node 3 1/(5 · 140) 1/(pigs·days)
k4 transition rate at node 4 1 1/days
L1 capacity node 1 ∞ pigs
L2 capacity node 2 825 pigs
L3 capacity node 3 2300 pigs
L4 capacity node 4 20 pigs
Sm slaughter capacity 440 pigs
X1(t0) initial condition 800 pigs
X2(t0) initial condition 700 pigs
X3(t0) initial condition 1500 pigs
X4(t0) initial condition 165 pigs

Table 3. Aggregated agricultural network model: Rescaled pa-
rameter values and initial conditions for the deterministic model.

Parameters Definition Values Units
κ1 scaled rate at node 1 1.674 1/days
κ2 scaled rate at node 2 0.323 1/days
κ3 scaled rate at node 3 4.521 1/days
κ4 scaled rate at node 4 1 1/days
l2 scaled capacity at node 2 2.607 · 10−1 dimensionless
l3 scaled capacity at node 3 7.267 · 10−1 dimensionless
l4 scaled capacity at node 4 6.3 · 10−3 dimensionless
sm scaled slaughter capacity 1.390 · 10−1 dimensionless
c1(0) scaled initial condition 2.528 · 10−1 dimensionless
c2(0) scaled initial condition 2.212 · 10−1 dimensionless
c3(0) scaled initial condition 4.739 · 10−1 dimensionless
c4(0) scaled initial condition 5.21 · 10−2 dimensionless
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3.2. Stochastic Simulations. The standard method for the stochastic simulation
of the discrete state continuous time Markov Chain of the type considered here is
based on a standard Monte Carlo algorithm, also known as the Gillespie algorithm
[29]. This algorithm is described below:

1. For a given state of the system x, compute λi(x) for i = 1 . . . , M (in our case
M = 4).

2. Calculate the summation of the rates λ =
M∑

i=1

λi(x) and simulate the time

until the next transition by drawing from an exponential distribution with
mean 1/λ.

3. Simulate the transition type RX ∈ {1, . . . , 4} by drawing from the discrete
distribution with P (RX = i) = λi(x)/λ.

4. Update the system state x and repeat.

Using the above algorithm implemented in the statistical software R [40], we
carried out numerous simulations for the model (5) with the initial conditions and
values for parameters q∗ = (k1 . . . , k4, Sm, L2, L3, L4) given in Table 2.
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Figure 2. Simulation of the stochastic model (5) of the food pro-
duction chain via the Gillespie algorithm. Parameter values are as
given in Table 2; N=3,165,000.

A sample of five realizations is plotted in Figure 2. Note that the realizations
exhibit very little visible differences. However, when one carries out the simula-
tions for a smaller system (N = 3, 165 pigs with the parameters in Table 2 scaled
accordingly), the variations are readily visible as can be seen in Figure 3. We also
remark that these two figures offer graphic depictions of the approximation theory
discussed in Section 2.2 where in the case of very large N one can cannot distinguish
between the stochastic simulations and the corresponding deterministic simulations
for the sample path averages.
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Figure 3. Simulation of the stochastic model (5) with N=3,165
and parameter values from Table 2 scaled accordingly.

3.3. Deterministic Simulation. We numerically solved the ODE system (9) us-
ing the ode15s solver in Matlab. We fixed the parameters q = q∗ to be the same as
in the stochastic simulation above (but scaled as in Table 3) and graph the solution
of the rate equations (9) for t ∈ [0, 100] in Figure 4. In Figure 4 (left), we plot the
numerical solution of the concentrations in system (9). To facilitate comparison
with the MC realizations plotted in Figure 2, we also depict the rescaled quantities
Ni(t) = Nci(t), which provide approximations to averages over sample paths of
Xi(t) in Figure 4 (right). As expected, we find that the stochastic and determinis-
tic computations provide similar numerical results, with the realizations fluctuating
about the solution of the deterministic system for the averages as predicted by the
theory.
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Figure 4. Numerical solution of the deterministic (rate equation)
system (9) for t ∈ [0, 100]. Parameter values are as given in Table
3.
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To observe the finer dynamics in the network, we plot the solution of the network
on a smaller time scale in Figure 5 (left). We find that our model solutions
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Figure 5. (left) Numerical solution of the corresponding deter-
ministic system for t ∈ [0, 50]. (right) Numerical solution of the
deterministic system (9) for t ∈ [0, 210] with L4 = 1000 and
Sm = 440. All other parameter values are as given in Table 3.
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Figure 6. (left) Numerical solution of the deterministic system
(9) for t ∈ [0, 210] with L4 = 1000 and Sm = 100. (right) Numer-
ical solution of the deterministic system (9) for t ∈ [0, 210] with
L4 = 1000 and Sm = 5. All other parameter values are as given in
Table 3.

approach the steady states rather quickly. All components remain stable thereafter
suggesting that the steady states are (at least locally) asymptotically stable (this
can be verified with analytical arguments). We believe that this behavior of the
model describes the food production network realistically when it is uninterrupted
by external events. In Figures 5 (right), 6 (left) and 6 (right), we observe similar
behavior in the food production chain for different values of the parameters L4

and Sm. As one can observe in these figures, when the value of Sm is sufficiently
large, the state N4, which is related to the replenishment of the network, will
never reach Sm, making the slaughter capacity constraint inactive in the production
system. Only when Sm is smaller than a certain critical value will it be active and
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in this case we observe accumulation of animals in the slaughter house (e.g., see
Figure 6 (right)). These calculations along with numerous others we carried out
suggest reasonable stability properties of the production chain in the absence of
any interventions such as FMD (we will investigate such disturbances below).

3.4. Sensitivity Analysis. In this section, we perform a sensitivity analysis of the
deterministic model (9), investigating how much the solution of the system changes
when the rates κi, the capacities li, or the initial conditions c0i, i = 1, . . . , 4 change.
This analysis will be used to identify the parameters and the initial conditions to
which the system is the most and least sensitive.

A second issue we address here, which is of great interest for inverse or parameter
estimation problems in a typical nonlinear regression model, is the sensitivity of the
parameter estimates with respect to the data measurements. We carry out this anal-
ysis by means of the generalized sensitivity functions (GSF) recently introduced by
Thomaseth and Cobelli [44]; these are specifically designed for input-output identi-
fication experiments. GSF are based on information theoretical criteria (the Fisher
information matrix) and, when used in conjunction with the traditional sensitivity
functions, give a more accurate picture of the time distribution of the information
content of measured outputs with respect to individual model parameters.

To use the well developed sensitivity analysis for the theory of dynamical systems
for our purposes, we begin by writing the system (9) in vector form. We introduce
the notation c(t) = (c1(t), c2(t), c3(t), c4(t))T ,q = (κ1, ..., κ4, sm, l2, ..., l4), c0 =
(c1(0), ..., c4(0))T , and denote by F = (f1, f2, f3, f4)T the vector function whose
entries are given by the expressions in the right side of (9). Then F : R4×R8 → R4,
and we can write our ODE system in the general vector form

dc
dt

(t) = F(c,q), (13)

c(0) = c0.

To quantify the variation in the state variable c(t) with respect to changes in the
parameters qj , j = 1, . . . , 8 and the initial conditions c0k, k = 1, . . . , 4, we are
naturally led to consider the sensitivity matrices

Y = {yij}i=1,...,4
j=1,...,8

=
{

∂ci

∂qj

}
i=1,...,4
j=1,...,8

, (14)

and

Z = {zik}i=1,...,4
k=1,...,4

=
{

∂ci

∂c0k

}
i=1,...,4
k=1,...,4

. (15)

We note that since our function F is sufficiently regular, the solutions ci are differ-
entiable with respect to qj and c0k, and therefore our sensitivity matrices Y and Z
are well defined. The physical interpretation of the sensitivity matrices is obvious.
Similar to the partial derivatives through which they are defined, they have a local
character (in time and parameters). If, for example, the entry yij = ∂ci/∂qj of
the matrix Y takes values very close to zero in a certain time subinterval, then the
state variable ci is insensitive to the parameter qj on that particular subinterval.
The same entry yij can take large values on a different subinterval, indicating that
in this time subinterval, the state variable ci is very sensitive to the parameter qj .
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From sensitivity analysis theory for dynamical systems [10, 20, 25, 36, 42], we
also know that Y(t) is a 4× 8 matrix that satisfies the ODE system

Ẏ(t) = Fc(c,q)Y(t) + Fq(c,q), (16)
Y(0) = 04×8,

and Z(t) is a 4× 4 matrix that satisfies

Ż(t) = Fc(c,q)Z(t), (17)
Z(0) = I4×4.

Here we have used the notation Fc = ∂F/∂c and Fq = ∂F/∂q for the 4×4 and the
4×8 Jacobian matrices of F with respect to c and q, respectively, while 0 and I are
the zero and the identity matrices with appropriate dimensions. Note that while
equations (16), (17) are linear in Y and Z, they must be solved in tandem with
equation (13), which is nonlinear. Consequently, the sensitivity analysis involves
the solution of a set of nonlinear equations.

We will compute the sensitivity of the system (13) with respect to q and c0

when the solutions are essentially at steady state. We carry this out by numerically
solving the systems (16) and (17) for the same values of the parameters q = q∗ and
initial conditions c = c∗0 as used in the stochastic simulations presented above (i.e.,
those given in Table 3) and by evaluating the solution at the fixed time t = 210
(arbitrarily chosen, but sufficiently large for our system to closely approach its
steady state). Due to the nature of our problem, in which the parameters have
different units and the state variables vary widely over many orders of magnitude,
it is appropriate to consider the relative sensitivities Sci,qj defined as the limit of
the relative change in ci divided by the relative change in qj when the relative
change in qj goes to zero; i.e.,

Sci,qj = lim
∆qj→0

∆ci/ci

∆qj/qj
. (18)

A simple analysis of the definition above (assuming that both ci and qj are nonzero)
yields that the relative sensitivity Sci,qj can be obtained by normalizing the usual
sensitivities ∂ci/∂qj such that

Sci,qj =
∂ci

∂qj
· qj

ci
. (19)

We note that the Sci,qj are dimensionless variables, invariant with respect to changes
in units for ci and qj , which we can utilize to compare the degree of sensitivity of
the state variables with respect to different parameters. In Table 4, we tabulate
the relative sensitivities at time t = 210 of each state variable ci with respect to
each parameter qj and each initial condition c0k. For any fixed parameter/initial
condition, we also tabulate the sensitivity of the system, cumulatively defined as the
Euclidean norm of the relative sensitivities of the four state variables with respect
to that parameter/initial condition. In other words, the sensitivity of the system
with respect to qj is given by

Sqj =
[ 4∑

i=1

S2
ci,qj

]1/2

. (20)

For the particular choice of the parameters q = q∗ and for the particular initial
condition c0 = c∗0, the data displayed in the last column of Table 4 reveal that near
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Table 4. Relative sensitivities of the state variables/ system with
respect to parameters qj and the initial conditions c0k near steady
state (t = 210). Baseline parameter values (q = q∗) and initial
conditions c0 = c∗0 are as in Table 3.

c1 c2 c3 c4 System

κ1 −2.65× 10
−1

8.97× 10
−2

8.34× 10
−3

2.08× 10
−3

2.80× 10
−1

κ2 −4.50× 10
−1 −5.78× 10

−2
8.76× 10

−2
2.19× 10

−2
4.62× 10

−1

κ3 1.70× 10
−1 −9.05× 10

−3 −2.40× 10
−2

2.43× 10
−1

2.98× 10
−1

κ4 5.45× 10
−1 −2.28× 10

−2 −7.18× 10
−2 −2.67× 10

−1
6.12× 10

−1

sm 0 0 0 0 0

l2 −2.42× 10
0

8.22× 10
−1

7.65× 10
−2

1.91× 10
−2

2.56× 10
0

l3 −5.17× 10
0 −6.65× 10

−1
1.00× 10

0
2.51× 10

−1
5.32× 10

0

l4 6.80× 10
−1 −3.61× 10

−2 −9.63× 10
−2

9.75× 10
−1

1.19× 10
0

c01 1.86× 10
0

2.27× 10
−1

2.11× 10
−2

5.29× 10
−3

1.88× 10
0

c02 1.63× 10
0

1.99× 10
−1

1.85× 10
−2

4.63× 10
−3

1.64× 10
0

c03 3.49× 10
0

4.27× 10
−1

3.97× 10
−2

9.93× 10
−3

3.52× 10
0

c04 3.84× 10
−1

4.69× 10
−2

4.37× 10
−3

1.09× 10
−3

3.87× 10
−1

the steady-state (t = 210) the system (9) is most sensitive (in decreasing order) to
l3, c03 and l2 and least sensitive to sm. One interesting outcome we obtain from the
analysis of the sensitivity data presented in Tables 4 and 5 is that the state variable
c1 is more sensitive to the parameter l3 and the initial condition c03 as compared to
the parameters κ1, κ4, sm and l4 and the initial condition c01 on which this state
variable depends directly. Without this sensitivity analysis, we could not infer this
behavior simply by looking at the system (9) since the parameters l3 and c03 do
not appear in the right side of the equation that defines dc1/dt. We find similar
results for c2 and c4 which are more sensitive to the non-direct initial condition c03

as compared to their direct initial conditions c02 and c04.
As we pointed out previously, the sensitivity functions by definition have a local

character both in the time domain and in the parameter domain, which implies
that the results displayed in Table 4 characterizes the sensitivity of the system only
for q = q∗, c0 = c∗0 and t = 210. However, to obtain a broader picture of the
sensitivity map for our system (9) near steady state (t = 210) or for the whole time
interval, one can compute the relative sensitivities (19) and (20) with respect to qj

and c0k on a uniform grid in a parameter neighborhood around the central values
q∗j and c∗0k and analyze the results thus obtained. (Although we carried out such
analyses, the results are not presented here.)

The sensitivity analysis we have performed so far is usually encountered in simu-
lation studies (direct problems) where we need to quantify the effects of parameter
variations on the trajectories of model outputs. Unlike simulations, in identifica-
tion studies (inverse problems) one typically wants to estimate model parameters
from data measurements, and one question of interest is to determine at which
time points the measurements are most informative for the estimation of specific
parameters. In addition, one may also desire a priori information about the degree
of correlation between model parameters which the TSF functions of (14) and (15)
used alone cannot provide. To address these questions, Thomaseth and Cobelli [44]
introduced the generalized sensitivity functions (GSF) which provide information
on the relevance of measurements of output variables of a system for the identifi-
cation of certain parameters as well as on parameter correlation. More precisely,
the generalized sensitivity functions describe the sensitivity of the parameter esti-
mates with respect to data measurements. We illustrate below the utility of these
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Table 5. Summary of the sensitivity analysis presented in Table
4. The columns rank the parameters and initial conditions in order
of increasing sensitivity for the four state variables, ci, and the
system.

c1 c2 c3 c4 System
sm sm sm sm sm

κ3 κ3 c04 c04 κ1

κ1 κ4 κ1 κ1 κ3

c04 l4 c02 c02 c04

κ2 c04 c01 c01 κ2

κ4 κ2 κ3 c03 κ4

l4 κ1 c03 l2 l4
c02 c02 κ4 κ2 c02

c01 c01 l2 κ3 c01

l2 c03 κ2 l3 l2
c03 l3 l4 κ4 c03

l3 l2 l3 l4 l3

functions to provide a better understanding of our network model, by performing a
sensitivity analysis for the inverse problem of estimating the parameters κ’s of the
system (9) through an ordinary least squares procedure.

For a single-output model f(t, θ) (e.g., the case where one has longitudinal ob-
servations of one component ci of the system (13)) with discrete time measurements

y(tk) = f(tk, θ0) + εk, k = 1, . . . , M, (21)

where θ0 is the “true” parameter values (assumed to exist in most statistical infer-
ence and information content formulations–see [8, 11, 43]), the generalized sensi-
tivity functions (GSF) are defined by

gs(tk) =
k∑

i=1

{([ M∑

j=1

1
σ2(tj)

∇θf(tj , θ0)∇θf(tj , θ0)T
]−1

×∇θf(ti, θ0)
σ2(ti)

)
•∇θf(ti, θ0)

}
,

where • represents element-by-element multiplication (see [44] and the Appendix of
[7] for motivation and details). The measurement errors εk in (21) are assumed to
be independently and identically distributed with zero mean and known variance
σ2(tk) and the nonlinear model function f(t, θ) is assumed to be differentiable with
respect to θ. Moreover, for simplicity, it is assumed that the observations y(tk),
as represented in (21), are used to estimate θ0 by minimizing the weighted sum of
squares (WSS)

WSS(y, θ) =
M∑

i=1

[y(ti)− f(ti, θ)]2

σ2(ti)
. (22)

In our case, the nonlinear model function f is replaced by a vector–valued function
which is the solution of the system (9) and the generalized sensitivity functions



MODELS FOR AGRICULTURAL PRODUCTION NETWORKS 389

(GSF) are given by

gs(tk) =
k∑

i=1

4∑

l=1

{([ M∑

j=1

4∑

l=1

1
σ2

l (tj)
∇θcl(tj , θ0)∇θcl(tj , θ0)T

]−1

× ∇θcl(ti, θ0)
σ2

l (ti)

)
• ∇θcl(ti, θ0)

}
.

(23)

Here ∇θcl represents the gradient of the state variable cl with respect to θ, where
θ ∈ RP is a vector including all (or just a subset of) the parameters κ’s and l’s and
the initial conditions c0’s.

We note that the generalized sensitivity functions (23) are vector-valued func-
tions having the same dimension P as θ and defined only at the discrete time points
tk, k = 1, . . . ,M . They are cumulative functions, at each time point tk taking into
account only the contributions of the measurements up to tk, thus representing the
influence of longitudinal measurements in contributing to the parameter estimates.

From (23) it follows that all the components of gs are one at the end of the
experiment; i.e., gs(tM ) = 1. If one defines gs(t) = 0 for t < t1 (gs is zero when
no measurement is collected) and interpolates gs continuously between observation
times, then each component gsp of gs varies continuously from 0 to 1 during the
experiment. As we will see in the example below, this transition is not necessarily
monotonic (gsp, p = 1, . . . , P may have oscillations) nor is it restricted to values in
[0, 1] (i.e., gsp may take values outside [0, 1]) if large correlations between parameter
estimates exist. As discussed in [44], the time subinterval during which this transi-
tion has the sharpest increase corresponds to measurements which provide the most
information on possible variations in the corresponding true model parameters.

Since the GSF theory is developed in the context of estimation problems, we
considered next an estimation problem using simulated “data.” The data used
for inversion was generated first by numerically solving the system (9) for the
parameter values given in Table 3 and then by adding 5% Gaussian white noise
to the solution obtained. We consider the problem of using this data to estimate
the parameters κ1, κ2, κ3 and κ4 in an ordinary least squares procedure (with the
other parameters and initial conditions fixed at the values from Table 3). The true
values for the κ’s are κ̄ = (1.674, 0.322, 4.521, 1)T . For θ0 = κ̄, the generalized
sensitivity functions (23) along with the traditional sensitivity functions for the
system (9) are presented in Figure 7. In both figures we note a very well defined
time subinterval, from t = 0 to about t = 60, where both GSF and TSF plots
exhibit sharp increases and decreases. After this, the TSFs reach very quickly a
steady state and the GSFs are forced to approach one. According to the theory,
the interval [0, 60] is the time region where measurements are most informative
for estimating the true parameters κ̄. So at least intuitively, sampling more data
points in this region would result in more information about the parameters κ̄ and
therefore more accurate estimates for them. By computing the correlation matrix
whose elements are given by standard formulas in least squares theory [9, 43], one
can also observe that strong correlations exist between estimates for κ3 and κ4. In
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Figure 7. Generalized and traditional sensitivity functions for
κ1, κ2, κ3, κ4, employing a simulated data set with M = 210,
generated as discussed in the text. Underlying parameter values
are κ1 = 1.674, κ2 = 0.322, κ4 = 4.521, κ4 = 1, while all other
parameters are as given in Table 3.

fact, the correlation matrix for these parameters is given by

Corr κ1 κ2 κ3 κ4

κ1 1.0000 0.4941 0.0004 0.2209
κ2 0.4941 1.0000 0.1388 0.1497
κ3 0.0004 0.1388 1.0000 -0.9502
κ4 0.2209 0.1497 -0.9502 1.0000

which is agrees with the dynamics of the curves shown in Figure 7. Positive corre-
lation between κ1 and κ2 is clearly indicated because the corresponding gsf graphs
increase together, while the negative correlation between κ3 and κ4 is evidenced by
the early opposite slope behavior in their corresponding gsf graphs.

Ordinary least squares inverse problems carried out with different sets of data
points illustrate and support the theory. We first performed the least squares
minimization for a data set DS1 consisting of a total of 15 observations, of which
8 were taken at equidistant points in the interval [0, 60] and 7 taken at equidistant
points in the interval [80, 210] (for simplicity, we exclude the transition interval
[60, 80] from our analysis here). The estimates for κ1, κ2, κ3 and κ4 along with
the R4 Euclidian norm of the error are displayed in Table 6. If we increase the
number of data points in the interval [0, 60] from 8 to 15 and keep the number
of data points in [80, 210] the same (see DS2 entry, same table), we observe a
significant decrease in the Euclidian norm of the error from 2.932 to 0.207, which
represents a significant increase in the accuracy of the parameter estimates. A
similar decrease from 2.224 to 1.859 and then to 0.973 is observed when we solve
the least squares problem with data from [0, 60] only (see DS5, DS6 and DS7

entries). Thus, numerical calculations support the fact that increasing the number
of data points in the region [0, 60] yields more accurate estimates for the parameter
κ̄, in agreement with the theoretical expectations from TSF and GSF.

A totally different outcome is obtained when we carry out numerical estimation
with an increasing number of data points in the interval [80, 210]. As one can see
by comparing the entries DS1 and DS4 in Table 6, only a small gain is obtained
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Table 6. Parameter estimates for the transition rates κ1, κ2, κ3

and κ4 with different data sets.

Data Points in Estimates for
Data Set [0,60] [80,210] Total κ1 κ2 κ3 κ4 error

DS1 8 7 15 1.638 0.329 1.775 2.028 2.932
DS2 15 7 22 1.579 0.305 4.341 0.966 0.207
DS3 30 7 37 1.708 0.302 2.728 1.178 1.803
DS4 8 14 22 1.625 0.322 1.830 1.786 2.804
DS5 8 0 8 1.686 0.337 2.379 1.597 2.224
DS6 15 0 15 1.736 0.330 0.378 1.064 1.859
DS7 30 0 30 1.724 0.298 3.549 1.013 0.973
DS8 0 17 17 12.540 1.966 14.587 9.814 17.314
DS9 0 33 33 45.554 7.588 69.183 32.589 84.600
DS10 0 66 66 51.161 9.842 92.137 36.002 106.964

True Parameter Values 1.674 0.322 4.521 1

in the accuracy of the parameter estimates is gained by doubling the number of
data points in the interval [80, 210]. Moreover, when we try to estimate the pa-
rameters κ̄ with data from the interval [80, 210] alone (see DS8, DS9 and DS10),
we obtain very large errors which increase in magnitude as the number of sample
points increases. Although puzzling at first view, this phenomenon is not surprising
at all from the perspective of the theories presented above and in [6]. Indeed, by
blindly sampling more data points from the region where the generalized sensitivity
functions exhibit the so called “forced-to-one” artifact and the traditional sensitiv-
ity curves are flat, we simply introduce redundancy in the sensitivity matrix, thus
increasing the condition number of the Fisher information matrix for our problem.
For an illustration and discussion of this phenomenon, see [6]. By the Cramér-Rao
inequality, the consequence is that the variance of the unbiased estimator (and the
corresponding standard errors) will be huge, making our estimates less useful. The
same phenomenon (introduction of redundancy in the sensitivity matrix) is respon-
sible for the poorer results which are obtained when we estimate κ̄ using data set
DS3 (the Euclidian norm of the error increased as compared to DS2, where we
doubled the number of points in [0, 60]). We observe an important drawback of the
GSF: while they specify the most informative regions with respect to the estimation
of parameters, they do not provide any information about the necessary number of
data points to be used in those regions.

We remark that in this section we have illustrated a methodology to quantify
the sensitivity with respect to parameters and initial conditions of a large complex
system. This methodology is a fundamental tool in identifying those parameters in
a model which require further, more in-depth investigation as well as the basis of
a statistical analysis for quantifying uncertainty in estimators (e.g., see [5, 6, 9, 11,
43]) as well as information content based model selection techniques [8].

4. Foot-and-Mouth Disease. Having established a basic model for the move-
ment of animals (pigs) in the agricultural system (the pork industry of North
Carolina), we are now ready to model the spread of an infectious disease in the
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food production network. In this section we describe the incorporation of an SIR-
type infection into the system and present simulations to illustrate the spread of
foot-and-mouth disease throughout the aggregated agricultural network.

We describe the infection by an SIR process [2, 12]. It is assumed that a pop-
ulation can be partitioned into three groups: susceptible (S), infectious (I) and
removed (R). In many settings the removed class represents individuals who have
recovered from the infection. Individuals move between these classes as they be-
come infected and recover from infection. Recovery is assumed to confer permanent
immunity to infection and the demography of the population (i.e., births and non
disease-related deaths) is ignored. In a well-mixed population the epidemiological
model can be described by the flowchart of Figure 8 and equations (24).

Susceptible

RIS

Infectious Recovered
γ  Iβ  SI      /        N

Figure 8. Flow diagram of the simple SIR model.

dS

dt
= −βSI

N
dI

dt
=

βSI

N
− γI (24)

dR

dt
= γI.

Here, S, I and R denote the numbers of susceptible, infective, and removed in-
dividuals, respectively. The transmission parameter is β: this parameter, when
combined with the rate at which individuals meet each other and the probability
that an infective would infect a susceptible during any one such meeting, yields the
transmission rate. It is assumed that recovery occurs at constant rate γ, so that
1/γ is the average duration of infection. The population size is denoted by N , and
we have in this case that N = S + I + R.

The behavior of the simple SIR model is governed by the basic reproductive
number, R0 [2, 12, 31, 14]. This quantity equals the number of secondary infec-
tions caused by the introduction of a single infectious individual into an otherwise
completely susceptible population. In terms of model parameters, the basic repro-
ductive number is given by

R0 = β/γ.

An outbreak of infection can only ever occur if R0 is greater than one, otherwise
the number of infectives can never increase.

We now combine the agricultural network model and the SIR model to produce
a description of the potential spread of an SIR-type infection in our agricultural
system. It is most convenient for us to work with the numbers of individuals
of each type found at the various nodes of the network, and so we convert the
concentrations of animals of the network model (9) into numbers. We write the
number of individuals found at node i as Ni, and so we have that Ni(t) = Nci(t).

We expand the first three nodes of the network, (i.e., those describing the grow-
ers/sows, nurseries and finishers), by including an SIR model within each of them.
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The infection statuses of the animals at the ith node are tracked by the quantities
Si, Ii and Ri. Since Ni is defined to be the total number of animals at this node
we have that Ni = Si + Ii + Ri.

I3 N4

NurseryGrower SlaughterFinisher

S1

I1

S2

R1

I2

R2

S3

R3

Figure 9. Flow diagram of the aggregated agricultural network
model with SIR infection.

We make the following set of assumptions about the infection process and its
impact upon the agricultural system:

(1) Pigs are born healthy, but susceptible. Piglets are introduced into the network
at the first node.

(2) There is no infection or recovery during transport between the nodes. This
is based on the idea that, in most cases, transportation takes no more than a
couple of days, which is relatively short compared to the amount of time the
pigs spend at each node.

(3) There is no infection in the slaughter node. In the absence of human inter-
vention this does not mean that the infectious animals are not processed: the
assumption is that the infection is not propagated after the animal’s death.

(4) Infected pigs in node i recover at rate γi. These recovery rates may differ
between the nodes and, since the individuals found at different nodes will
have different ages, these parameters depict age-dependent recovery rates.

(5) Recovered pigs have temporary immunity; i.e., pigs do not immediately be-
come susceptible after recovering from FMD. The rates at which recovered
pigs become susceptible again are ρi (i = 1, 2 or 3). While some diseases
afford permanent immunity to the recovered animal, immunity acquired af-
ter FMD infection wanes in a matter of months. If vaccination of animals
were considered, there would be an accumulation of animals in the recovered
groups of the appropriate nodes.

(6) We assume that the FMD-related death rate is small enough that we can
ignore such deaths. Control strategies such as culling infective or susceptible
animals could be modeled by including death terms.

(7) Since our network model assumes that the system is closed, we assume that
any deaths are replenished by the introduction of piglets into the network.
As already mentioned, these introductions occur into the first node. Conse-
quently, as illustrated in the flowchart, Figure 9, the slaughtered animals that
leave node four effectively return to the S1 class. Similarly, if animal culling
were being considered, the model would include flows from the appropriate
classes back to S1.

(8) No human intervention. In the model as presented here, we assume that
humans do not make any adjustments to operation of the agricultural system
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in response to the infection: animal movement and processing continues as
normal. Of course, one of the main aims of creating a model such as this is to
enable the consideration of control strategies. In this study, we do not do this
as we wish to first establish the baseline (no-control) behavior of the system.

With this set of assumptions we obtain the following system of equations for
the deterministic model of the aggregated agricultural network model with an SIR
infection.

dS1

dt
= −β1S1I1/N1 + ρ1R1 − k1S1(L2 −N2)+ + k4 min(N4, Smax)

dI1

dt
= β1S1I1/N1 − γ1I1 − k1I1(L2 −N2)+

dR1

dt
= γ1I1 − ρ1R1 − k1R1(L2 −N2)+

dS2

dt
= −β2S2I2/N2 + ρ2R2 − k2S2(L3 −N3)+ + k1S1(L2 −N2)+

dI2

dt
= β2S2I2/N2 − γ2I2 − k2I2(L3 −N3)+ + k1I1(L2 −N2)+

dR2

dt
= γ2I2 − ρ2R2 − k2R2(L3 −N3)+ + k1R1(L2 −N2)+

dS3

dt
= −β3S3I3/N3 + ρ3R3 − k3S3(L4 −N4)+ + k2S2(L3 −N3)+

dI3

dt
= β3S3I3/N3 − γ3I3 − k3I3(L4 −N4)+ + k2I2(L3 −N3)+

dR3

dt
= γ3I3 − ρ3R3 − k3R3(L4 −N4)+ + k2R2(L3 −N3)+

dN4

dt
= −k4 min(N4, Smax) + k3N3(L4 −N4)+.

In many ways, this model resembles a standard multi-group epidemiological
model, and so we might hope to find the basic reproductive number of the system
using standard multi-group methodology [12, 13]. It is straightforward to find the
next generation matrix, whose entries, tij , give the average numbers of secondary
infections that result in node i from the introduction of one infectious individual
into node j when all individuals at node i are susceptible. For within-patch trans-
mission, we have

t33 =
β3

γ3 + k3(L4 −N4)+

t22 =
β2

γ2 + k2(L3 −N3)+

t11 =
β1

γ1 + k1(L2 −N2)+
.

Here, the term 1/(γi + ki(Li+1 − Ni+1)+) is the average duration of infection for
infectives in node i, corrected for their departure on account of transportation.
Movement of individuals between nodes reduces the average number of within-node
secondary infections, with this effect being most noticeable if the node residence
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time is short compared to the duration of infection. For between-node transmission
we have

t32 =
k2(L3 −N3)+

γ2 + k2(L3 −N3)+
t33

t21 =
k1(L2 −N2)+

γ1 + k1(L2 −N2)+
t22

t31 =
k1(L2 −N2)+

γ1 + k1(L2 −N2)+
k2(L3 −N3)+

γ2 + k2(L3 −N3)+
t33

t12 = t23 = t13 = 0.

Here, the term ki(Li+1 −Ni+1)+/(γi + ki(Li+1 −Ni+1)+) gives the probability
that an infectious individual in node i is transported to node i + 1 before it re-
covers.

Multi-group theory reveals that, for an irreducible system (i.e., one in which
infection can travel between any pair of nodes, possibly via intermediate nodes), the
basic reproductive number is given by the dominant eigenvalue of this matrix. Our
system is not irreducible, however, since infected animals can move only from a node
to the following node: infection can spread to succeeding nodes but not preceding
ones. Consequently, the standard definition of R0 for multi-group systems is not
helpful to us. From the tij we can, however, easily calculate the average number
of secondary infections caused by the introduction of a single infective into node j
when all other individuals in the population are susceptible. These quantities equal
t11 + t21 + t31, t22 + t32, and t33, for nodes 1, 2, and 3, respectively.

We now turn to numerical simulation of the model. Unfortunately, the existing
studies in the literature do not provide us with an appropriate set of parameter
values to use. Epidemiological parameters for the spread of FMD between various
types of animals, including pigs, have been quantified [17, 18, 22, 23, 24, 32, 33,
34, 38, 39, 46] but on spatial scales that are quite different from our aggregated
network description. On a large spatial scale, transmission between farms has
been described, for instance during the 1967/68 and 2001 outbreaks in the UK,
and parameter estimates obtained [22, 23, 24, 32, 33, 34, 46]. Large-scale studies,
however, take the individual unit of the model to be farms and so do not consider
transmission between individual animals.

On a small spatial scale, detailed transmission experiments [17, 18, 39, 38] have
examined the spread of infection between small numbers of closely housed animals,
either within or between pens. (Given the earlier comment regarding age-dependent
epidemiological parameters, it is interesting to note that some of these experiments
have been carried out on pigs of different ages.) These experiments, which typically
involve placing one or more infected animals in close contact with a number of
susceptible animals, demonstrate the high degree of infectiousness of FMD. In many
instances every susceptible animal became infected [17]. Instances in which all
animals become infected provide less informative estimates of R0 than might be
hoped since the statistical methodology employed gives an infinite estimate for R0.
An alternative statistical approach [18] accounts for the time dependence in the
experiment and provides estimates of the transmission parameter β.

The literature provides us with satisfactory estimates for the average durations of
infectiousness and immunity [28], but not R0 (or, equivalently, β). For illustrative
purposes, we shall take R0 to equal 10 at each level of the network in the absence
of transportation.
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Parameters for the Aggregated Agricultural Network Model with SIR
Parameters Definition Values Units Reference

R0 basic reproductive number 10
γ1, γ2, γ3 recovery rate 1/31,1/31,1/31 1/day [28]
ρ1, ρ2, ρ3 rate of loss of immunity 1/180,1/180,1/180 1/day [28]

All the simulations that follow assume that the network is initially in its demo-
graphic steady state. The epidemiological assumptions that we have made imply
that this holds for all future times. (This would not be the case if we had deaths
at the nursery or finisher nodes.) We choose to introduce infection by infecting a
certain number of individuals in the initial node.

Our first simulation (Figure 10) illustrates the movement of a cohort of infectious
individuals through the network in the absence of ongoing transmission. We set
β1 = β2 = β3 = 0, and introduce infection by placing 50, 000 infected piglets in the
grower node.
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Figure 10. Simulation I: Recovery and movement of infectious
individuals through the network, in the absence of transmission.
Notice that susceptible numbers are plotted on different scales (left
vertical axis on each panel) from infective and recovered numbers
(right vertical axis on each panel). Parameter values are given in
the text: each βi is set equal to zero, infection is assumed to last
31 days and immunity lasts 180 days. The initial conditions are
N1 = 315, 000, N2 = 735, 000, N3 = 2, 100, 000 and N4 = 15, 000.
Of the piglets at the first node, 50, 000 are initially taken to be
infectious, while the remainder of the population is susceptible.

In this simulation infected animals either recover or get transported to the next
node. In the grower node, the number of infected animals simply decreases ex-
ponentially, while the number of recovered animals increases and then declines.
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Within a fairly short time period, the grower population is entirely replaced by
susceptible individuals, reflecting the rapid turnover of the grower node. We see
the appearance of infection first at the nursery and then at the finisher node. Since
the system is at demographic equilibrium, we see no change at the slaughter node.

For our second simulation (Figure 11), we assume that, in the absence of trans-
portation, the infection would have a basic reproductive number equal to 10 at each
node. Consequently, we set βi/γi = 10. As before, we take the initial population
to be in demographic equilibrium, but we now introduce just 200 infective piglets
into the grower node.

0 50 100 150 200
time (days)

0

50

100

150

200

250

300

N
um

be
r 

of
 p

ig
s

   
(t

ho
us

an
ds

)

Grower

0 50 100 150 200
time (days)

0

200

400

600

800

N
um

be
r 

of
 p

ig
s

   
(t

ho
us

an
ds

)

Nursery

0 50 100 150 200
time (days)

0

500

1000

1500

2000

2500

N
um

be
r 

of
 p

ig
s

   
(t

ho
us

an
ds

)

Finisher

S S

S

I
I

I

R

R

R

Figure 11. Simulation II: Dynamics following the introduction
of infection, with R0 = 10. This value of the basic reproductive
number determines the value of the transmission parameters (βi).
Initial conditions and other parameter values are as in the previous
figure, except that only 200 of the 315,000 individuals at the grower
node are infective at the initial time.

The system rapidly approaches an equilibrium in which infectious animals are
present at each node. The fraction of animals that are susceptible at equilibrium
is much higher at the grower node (24.8%) than at either the nursery (6.9%) or
finisher (7.9%). This should be expected, since all animals arriving at the grower
are susceptible, while the infection statuses of those entering the nursery or finisher
reflect the composition of the preceding node (i.e., grower and nursery nodes, re-
spectively). For example, only 25% of the arrivees at the nursery are susceptible.
The susceptible fraction at the finisher is slightly higher than at the nursery due to
the replenishment of susceptibles by loss of immunity: this relatively slow process
has a higher chance of occurring at the finisher since an animal’s average residence
time there is longer than at the nursery.

The differing susceptible fractions between the nodes mean that, relative to the
size of the population of each node, there is less ongoing transmission at either
the nursery or finisher node than at the grower. The equilibrium infective fraction
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decreases as the supply chain is traversed (46.8%, 31.5% and 16.2% at the grower,
nursery and finisher, respectively), while the recovered fraction increases (28.4%,
61.5% and 75.9%).

The impact of age-dependent transmission rates and the differing residence times
is explored in our third simulation (Figure 12). Again only 200 infectives were
introduced, but now we assume that younger animals are less infectious than older
animals. The basic reproductive numbers, in the absence of transportation, at
the grower, nursery and finisher nodes are taken to equal two, ten and fifteen,
respectively. (We exaggerate the age-dependent differences in R0 for illustrative
purposes.)
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Figure 12. Simulation III. Age-dependent transmission of infec-
tion. If there were no transportation of animals, the basic repro-
ductive numbers at the grower, nursery and finisher nodes would
equal 2, 10 and 15, respectively. These values of R0 determine the
parameters β1, β2 and β3. All other parameter values and initial
conditions are as in the previous figure. For the panel depicting
the grower, note that susceptible numbers are plotted on a different
scale (left vertical axis) from the infective and recovered numbers
(right vertical axis), and these infective and recovered numbers
are not in thousands. Also note that infection goes extinct in
the grower node while a positive equilibrium level of infection is
achieved at the nursery and finisher nodes.

Transportation has a major impact on the dynamics of the infection: the move-
ment of individuals out of the grower node is sufficiently rapid that the infection
cannot persist in this node. The number of infectives falls roughly exponentially,
as does the number of recovereds, although the latter only occurs after an initial
rise (which largely reflects the recovery of the initial pool of infectives). The dy-
namics in this node are somewhat reminiscent of those seen in the first simulation
(in which there was no transmission), although they play out on a slower timescale
since there is some ongoing transmission.
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Disease transmission at the nursery and finisher nodes occurs sufficiently fast
that the prevalence of infection approaches a positive, endemic, equilibrium at both.
Observe that, even though the transmission parameter in the nursery node is the
same as it was in the previous simulation, the equilibrium numbers of susceptibles
and infectives are higher here than they were in the previous simulation. This
reflects the differences between the compositions of the populations entering the
nursery node in the two simulations, with more susceptibles arriving in the age-
dependent situation.

5. Concluding Remarks. In this paper we have demonstrated a methodological
approach to the investigation of production networks and their vulnerability to
disturbances such as diseases. The stochastic model and the resulting approximate
deterministic system we employ were shown to agree well, but are not validated.
Rather, we carry out simulations and sensitivity analyses with parameter values
that are only loosely based on a swine network. We use the deterministic model
to show how to determine the parameters to which the model at these parameter
values exhibits the most sensitivity. Finally, we demonstrate how disease can be
introduced and the resulting network vulnerabilities analyzed. An interesting next
step would involve obtaining experimental data to validate and perhaps improve the
model for a specific production network. This would require using inverse problem
algorithms with the data to obtain estimates along with measures of associated
uncertainty (e.g., standard errors [9, 43]) for the underlying transition rates ki.

Other obvious questions for further investigation involve the transmission dy-
namics of the infection. It is well known, for example, that random effects can
have a major impact on the invasion of an infection into a population. The use
of constant rates of recovery and loss of immunity for the infection should also be
questioned. These assumptions, which are biologically unrealistic for many infec-
tions, could be important in cases such as the one presented above where the life
span of the animals is comparable in length to the duration of infection and immu-
nity. Finally, the model used here assumes instantaneous transport between nodes.
If infection during transport is an important factor (and depending on the disease
it may well be) then the structure of the model should be modified to incorporate
positive transport times. This could lead to more interesting (mathematically) and
more difficult dynamical systems with time delays in place of (9) and the corre-
sponding systems in Section 4.

The randomness seen in the stochastic network model originates from the ran-
dom movement of discrete individuals from node to node. The analysis of Sections
2.2 and 3.2 shows that, due to an averaging effect, these random effects become
less important as the system size N increases. Application of the stochastic trans-
portation model to describe a real-world situation should, therefore, account for
the size of the groups in which pigs are transported between nodes. If, for example,
one thousand pigs were moved at a time, the appropriate notion of an “individual”
within the model would be a thousand pigs. Treating each group of a thousand
animals as a unit would lead to a marked increase in the magnitude of stochastic
fluctuations seen at the population level. Consequently, even though the system
size in our simulations is on the order of millions of pigs, it might be that the re-
sulting stochastic fluctuations in a more realistic model of the production system
are closer to those shown in Figure 3 than to those of Figure 2.
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The approach outlined in this paper has rather obvious potential for application
to a wide range of problems. These include the investigation of the spread of
diseases through spatially or structurally distributed dynamic populations (e.g.,
avian flu through migrating bird populations, contagious infections through human
and animal populations that are highly mobile, highly age-structured, or both). In
some of these cases the natural nodal structure would be a continuum, requiring
stochastic and deterministic models with a continuum of spatial and structural
heterogeneities, leading to partial differential equation systems. Such applications
would undoubtedly motivate the development of interesting new stochastic and
deterministic mathematical and computational methodologies.

We also note that the approach and methodology presented here are useful for
investigation of a wide range of perturbations other than disease (e.g., loss of ca-
pacity at a given node such as a factory being shut down for some reason) in supply
networks. In particular they would be useful in the assessment of risk of a food-
borne pathogen (e.g., salmonella, listeria, etc.) entering the food chain [27] due to
contamination (either accidental or deliberate) at some stage of the supply chain.
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